DOUBLE-CANTILEVER BEAM SPECIMEN BENT BY PAIRS OF OPPOSITE TERMINAL TRANSVERSE LOADS

P. N. B. ANONGBA

Université F.H.B. de Cocody, U.F.R. Sciences des Structures de la Matière et de Technologie, 22 BP 582 Abidjan 22, Côte d'Ivoire

(reçu le 27 Septembre 2024; accepté le 05 Novembre 2024)

* Correspondance, e-mail : anongba@gmail.com

ABSTRACT

A double-cantilever beam (*DCB*) specimen embedded horizontally in a wall at one end and bent by pairs of opposite terminal transverse loads F and -F at the other end presents two different behaviors: (*i*) When F is small, the separation of the two beams would end before reaching the wall. (*ii*) For F sufficiently large, a crack would develop and expand towards the wall. Assuming a constant crack-front velocity v, the crack extension force G per unit length of the crackfront can be calculated. Its value $G^{(I)}$ is provided in the subsonic velocity regime ($v < c_t$ velocity of transverse sound wave), as example.

Keywords : fracture mechanics, linear elasticity, dislocations, crack extension force, mechanical behavior of materials.

RÉSUMÉ

Échantillon de poutre à double porte-à-faux plié par des paires de charges transversales terminales opposées

Un échantillon de poutre à double porte-à-faux (*DCB*) encastré horizontalement dans un mur à une extrémité et plié par des paires de charges transversales terminales opposées F et -F à l'autre extrémité présente deux comportements différents : (*i*) Lorsque F est petit, la séparation des deux poutres se terminerait avant d'atteindre le mur. (*ii*) Pour F suffisamment grand, une fissure se développerait et s'étendrait vers le mur. En supposant une vitesse de front de fissure constante v, la force d'extension de fissure G par unité de longueur du front de fissure peut être calculée. Sa valeur $G^{(I)}$ est fournie dans le régime de vitesse subsonique ($v < c_t$, la célérité des ondes transversales), à titre d'exemple.

Mots-clés : *mécanique de la rupture, élasticité linéaire, dislocation, force d'extension de fissure, propriétés mécaniques des matériaux.*

P. N. B. ANONGBA

Consider a rectangular bar BAA'B' (*Figure 1*) of thickness $BB' = 2 e_0$, embedded in wall at one end BB' in a horizontal position; at the other end AA', a pair of opposite terminal transverse vertical loads F and -F separate into two equal parts (*J*) BAA_mB_m and (*J*)' $B_mA_mA'B'$ the bar BAA'B'. These are drawn dashed before separation and full under loads. Such specimen under loads is named "Double-cantilever beam (*DCB*) specimen" (see Fig. 2.13 in [1]) with beams (*J*) and (*J*)'. To the initial dashed form of the specimen is attached a Cartesian coordinate system x_i where the direction x_1 (left-to-right) is horizontal (axis of the sample), x_2 is the upward vertical and $x_1x_2x_3$ forms a direct orthogonal basis. An origin for this coordinate system may be located at the center of the sample cross section at the wall.

Figure 1 : Rectangular bar BAA'B' (length BA, thickness $BB' = 2 e_0$ and width l_0 , measured along x_1 , x_2 and x_3 , respectively) embedded in a wall at one end BB' in horizontal position and separated into two arms at the other end AA' by a pair of opposite vertical loads F and -F. It is assumed that no shearing stresses exist in the sample region located between vertical lines BB_mB' and OO_m^0O' ; see text for details.

P. N. B. ANONGBA

The objective of this study is to investigate the conditions for the separation of the bar under loads into to equal parts (*J*) and (*J*)'. The specimen is assumed large, homogeneous, isotropic, deforming elastically, and fracturing without plasticity. Gravitational forces are neglected. The elastic stress fields in the *DCB* sample can be understood from [2]. The bottom part (*J*) of the specimen can be viewed as a rectangular bar bent by terminal transverse load *F*. Hence, various notations and definitions reported in part (*J*) (*Figure 1*) are identical to those of Fig. 1 of [2]; remains to specify what is L_0 in the present. It is assumed that to given *F* corresponds a position O_m^0 such that $O_m^0 A_m = L_0$. Moving on the central line from A_m to B_m , O_m^0 is the first spatial position for which the two arms (*J*) and (*J*)' have horizontal tangents parallel to $B_m A_m$ (*i.e.* to x_1). Under such conditions, the tensile stresses $\sigma_{11} \equiv \sigma_n (O_m^0)$ at O_m^0 in both (*J*) and (*J*)' are parallel to x_1 , and read [2]:

$$\sigma_n(O_m^0) = \frac{FL_0 e_0}{2I},$$

$$I = \frac{l_0 e_0^3}{12}.$$
(1)

Considering tensile forces $\sigma_n(O_m^0)$ only, there is no relative displacement of faces of the crack in the x_1 and x_2 directions. Consequently, the crack would stop about O_m^0 ; this corresponds to $G(O_m^0) = 0$. However there exists tensile stresses parallel to x_2 [2] that open the crack faces about O_m^0 . These are $\sigma_{22}(O_m^0)' \equiv v\sigma_n(O_m^0)$ and $\sigma_{22}(O_m^0) \equiv -v\sigma_n(O_m^0)$ in arms (*J*)' and (*J*) (*v* is Poisson's modulus). In x_1 - region between B_m and O_m^0 , the tip of the crack is under mode *I* loading. Assuming a planar straight-fronted crack in uniform motion v = constant, the crack extension force *G* can be taken from [3]. Hence in the subsonic velocity regime ($v < c_t$ the velocity of transverse sound wave), we may write:

$$G^{(I)}(O_{m}(t)) = \frac{bK_{I}^{2}}{4\pi C_{1}^{(I)}},$$

$$K_{I} = v\sigma_{n}(O_{m}^{0})\sqrt{\pi c}, \ c = vt + L_{0},$$

$$C_{1}^{(I)} = \frac{\mu b \left(2 - \tilde{v}_{t}^{2}\right)}{\pi \tilde{v}_{t}^{2}} \left(\frac{1}{P_{t}} - \frac{1}{P_{l}}\right);$$

$$\tilde{v}_{t} = v/c_{t}, \quad P_{t}^{2} = 1 - \tilde{v}_{t}^{2}; \quad \tilde{v}_{l} = v/c_{l}, \quad P_{l}^{2} = 1 - \tilde{v}_{l}^{2};$$
(2)

P. N. B. ANONGBA

 μ is the shear modulus, c_l the velocity of longitudinal sound wave, t incremental time from zero and b a Burgers vector used in [3]. It is stressed that O_m^0 position along B_mA_m (*Figure 1*) may be determined experimentally by observing the shape of the bar BAA'B' under loads; BB' is allowed locally to contract and extend freely along x_2 in the wall. In summary, considering a *DCB* specimen bent by pairs of opposite terminal transverse loads F and -F (*Figure 1*), two different situations emerge: (*i*) When F is small, the separation into two beams would end about O_m^0 before reaching the wall; this corresponds to $G(O_m^0) = 0$. (*ii*) For sufficiently large F, a crack would develop from O_m^0 towards B_m . Assuming its motion uniform with constant crack-front velocity v, the crack extension force G per unit length of the crack-front is finite. Its value $G^{(I)}$ is given by (2). We may therefore equal $G^{(I)}$ to 2γ where γ is the surface energy under stationary conditions.

REFERENCES

- [1] B. LAWN, "Fracture of Brittle Solids 2nd Edition", Cambridge University Press, New York, (1993)
- P. N. B. ANONGBA, A theory of the fracture of rectangular bars bent by terminal transverse load and couple, *Rev. Ivoir. Sci. Technol.*, 26 (2015) 76 - 90
- [3] P. N. B. ANONGBA, Planar cracks in uniform motion under mode I and II loadings, *Rev. Ivoir. Sci. Technol.*, 35 (2020) 1 22