CONOIDAL CRACK WITH ELLIPTIC BASES, WITHIN CUBIC CRYSTALS, UNDER ARBITRARILY APPLIED LOADINGS - IV. APPLICATION TO ½<110> {111} CROSS-SLIP IN FCC MATERIALS

P. N. B. ANONGBA

Université F.H.B. de Cocody, U.F.R. Sciences des Structures de la Matière et de Technologie, 22 BP 582 Abidjan 22, Côte d'Ivoire

(reçu le 02 Juillet 2024; accepté le 05 Novembre 2024)

* Correspondance, e-mail : anongba@gmail.com

ABSTRACT

Assuming the dislocation elliptical in the cross-slip plane at the beginning of the cross-slip process, it is shown that $\langle G \rangle$, a measure of the energy release rate, obtained in *Part I* of this study applies. $\frac{1}{2} <110 > \{111\}$ cross-slip systems, observed in [112] copper single crystals deformed through *stage III* in constant strain rates above room temperature, do correspond to positive local $\langle G \rangle$ maxima. It is also suggested that the same treatment applies to the cross-slip between parallel basal planes in close packed hexagonal (CPH) structures.

Keywords : fracture mechanics, linear elasticity, dislocations, crack extension force, high temperature mechanical twinning, cross-slip.

RÉSUMÉ

Fissure conoïdale à base elliptique dans un cristal cubique sous sollicitations extérieures arbitraires – IV. Application au glissement dévié ½<110> {111} dans les matériaux CFC

En supposant la forme de la dislocation elliptique dans le plan de glissement dévié, au début du processus de déviation, il est montré que $\langle G \rangle$, une mesure du taux de libération d'énergie obtenue dans la *partie I* de cette étude s'applique. Les systèmes de glissement dévié $\frac{1}{2} <110 > \{111\}$, observés dans des monocristaux de cuivre d'axe [112] déformés au *stade III* à des vitesses de déformation constantes au-dessus de la température ambiante, correspondent à des maximas positifs locaux de $\langle G \rangle$. Il est également suggéré que le même traitement s'applique au glissement dévié entre des plans basaux parallèles dans des structures hexagonales compactes (HC).

Mots-clés : *mécanique de la rupture, élasticité linéaire, dislocation, force d'extension de fissure, maclage mécanique à haute température, glissement dévié.*

I - INTRODUCTION

In the same way as in *Part II* and *III* [2, 3], the analysis of *Part I* [1] is applied to $\frac{1}{2} <110 > \{111\}$ cross-slip systems, observed in [112] copper single crystals deformed through *stage III* in constant strain rates above room temperature (present *Part IV*). We refer to the experimental works [4 - 7] and the stereographic projection with centre [112] (*Figure 1*) for the identification of slip systems. Plastic deformation of the specimens begins in *stage II* with the two symmetrical equally stressed slip systems $\frac{1}{2} [011] (1\overline{11})$ and $\frac{1}{2} [101] (\overline{111})$.

Figure 1 : *Stereographic projection with centre* [112] *for the identification of slip systems*

The hardening rate ($\theta = d\tau / d\gamma$; τ and γ , shear stress and strain) in *stage II*, θ_{II} , is constant with stress τ . At a stress level called τ_{III} begins the deformation stage *III* where θ_{III} is decreasing with stress [4 – 6]. Abundant cross-slips occur on the deviation plane (111) and these are due to screws ½ [011] and ½ [101] gliding initially on (111) and (111), respectively [4, 7]. In this *part IV* and *Section* 2, the methodology for the use of the analysis in [1] is described. In *Section* 3, results are displayed corresponding to cross-slips. Section 4 and 5 concern discussion and conclusion, respectively.

II - METHODOLOGY

Figure 2 shows the conoidal crack geometry under load that has been used in [1] to calculate the associated crack extension force G per unit length of the crack front.

Figure 2 : Elliptical base (elevation $x_2 = OO' \equiv h$) of the conoidal crack with semiaxes ρ_1 and ρ_2 along x_1 and x_3 . The running point P_D [1] along the base and angular parameters θ_0 and ϕ_0 that connect x_j and \vec{x}_j are illustrated. Angle θ is introduced by the relation $\tan \theta = OO'/\rho_1$. The medium suffers uniformly applied tension σ_{22}^a in the vertical x_2 - direction and shears σ_{21}^a and σ_{23}^a (parallel to the horizontal x_1x_3 - plane) in the x_1 and x_3 directions.

Induced normal Poisson's stresses $-\nu_A(j)\sigma_{22}^a$ along x_1 (j=1) and x_3 (j=3) are included. The crack nuclei are arbitrarily oriented with attached Cartesian (O; x_j); $O x_2$ is a symmetrical axis. In x_1x_3 – planes, the bases are elliptical with semiaxes ρ_1 and ρ_2 along x_1 and x_3 such that $a_r = \rho_1 / \rho_2 = \text{constant}$ about any elevation $x_2 = OO' \equiv h$ along $O x_2$. The angle ϕ is between $O' x_3$ and $O'P_D$ as shown in *Figure 2*. Angle θ is measured in $O x_1 x_2$ between $P_D (\phi = \pi/2) O'$ and $P_D (\phi = \pi/2) O$ where $P_D (\phi = \pi/2)$ has elevation $x_2 = h$ from $O x_1 x_3$; its alternate interior angle is shown in *Figure 2*. Additional angular parameters θ_0 and ϕ_0 (Euler's angles) are introduced that connect \vec{x}_j to \vec{x}_j . We consider average $\langle G \rangle$.

Figure 3 : Configuration (at an arbitrary time t) of the screw dislocation 1/2[011] during the cross-slip process. The shape is assumed elliptical in $(11\overline{1})$ and the parts in $(1\overline{1}1)$ are hatched

obtained in the first part of this study (see relation (34) of [1]) and present below graphical plots of its normalized value $\langle \tilde{G}_r \rangle$ defined as

$$< \tilde{G}_{r} > = < G > /G_{Cs}^{I} = < \tilde{G}_{r} > (\theta, \theta_{0}, \phi_{0}, M_{12}, M_{13}, a_{r}, C_{nm}) ,$$

$$G_{Cs}^{I} = \frac{2^{4} \alpha_{0}^{2}}{3\pi^{2} C_{44}} (K_{I}^{0})^{2} ;$$

$$(1)$$

where $K_1^0 = \sigma_{22}^a \sqrt{\pi\Delta}$, $M_{12} = \sigma_{21}^a / \sigma_{22}^a$ and $M_{13} = \sigma_{23}^a / \sigma_{22}^a$; Δ is the separation of the partial dislocations. The applied stresses are viewed as effective stresses acting on the dislocations in the medium. The room temperature average values $C_{11} = 1.691$, $C_{12} = 1.222$ and $C_{44} = 0.7542$ in units of $[10^{11}N / m^2]$ for copper have been used (see *Table* 2 in [8]). *Figure* 2 is used to specify a plane of crossslip (S). x_2 is vertical, parallel to the applied tension, x_3 is then determined as the intersection between (S) and the laboratory horizontal plane (x_2) = Ox_1x_3 allowing x_1 to be known. For definiteness, x_2 is fixed to [112] and we seek possible cross-slip systems under such conditions. Then graphical plots of $\langle \tilde{G}_r \rangle$ as a function of ϕ_0 are displayed. The cross-slip propagation directions [U] in (S) are those associated to positive local maxima. We take (S) = (111)

[4, 7] : using *Figure 1* and 2 and indicating the directions only, we have

$$\theta_0 = \pi/2, x_2 = [112], x_3 = [110], x_1 = [111], x_2 = [111]$$
 (2)

Figure 3 displays the configuration (at an arbitrary time t) of the screw dislocation $\frac{1}{2}$ [011] during the cross-slip process. The shape is assumed elliptical in $(11\overline{1})$ and the parts in $(1\overline{1}1)$ are hatched. As the ellipse expands in $(11\overline{1})$, the configurations in $(1\overline{1}1)$ remain unchanged; consequently, these latter contribute non-additional value to $\langle G \rangle \langle d \langle G \rangle = 0 \rangle$ there. Hence, $\langle G \rangle$ value is carried by the elliptical shape in $(11\overline{1})$. The quantity $\langle G \rangle$ (see expression (34) in [1]) applies. Positive local maxima of $\langle \tilde{G}_r \rangle$ correspond to equilibrium states of the cross-slip. The loadings are along x_i as indicated (*Figure 3*). $a_r = a_1 / a_2$, where a_1 and a_2 are the semiaxes along $x'_1 = [\overline{1}10]$ and $x'_3 = [\overline{1}\overline{12}]$, respectively. In the stationary configuration, we take $2a_2 = \Delta$ the separation of partials (1). The resolved shear stress τ_{III} at the beginning of stage III has been found thermally activated, satisfying an Arrhenius law temperature T dependence [4-6]. This can be included in the analysis in a similar way as for τ_V [2] the stress at the beginning of twinning.

III - RESULTS

Figure 4 is a plot of $\langle \tilde{G}_r \rangle$ (1) for $(S) = (11\overline{1})$ (2) as a function of ϕ_0 . Positive maxima of $\langle \tilde{G}_r \rangle$ are at $\phi_0 = \pi/2$ and π approximately (visual inspection). The former corresponds to the cross-slip system $[011](11\overline{1})$ ($\phi_0 = \pi/2$). The second may be other mechanisms ($[\overline{112}](11\overline{1})$ twinning and fracture, for instance); these are observed at higher stress levels as compared to τ_{III} under similar temperatures. *Figure 5* shows $\langle \tilde{G}_r \rangle$ (1) for the cross-slip system $[011](11\overline{1})$ ($\theta_0 = \pi/2$, $\phi_0 = \pi/2$) as a function of a_r . Visual inspection shows non-negative values of $\langle \tilde{G}_r \rangle$ close to zero, from $a_r \cong 0$ up to $a_r \cong 1.5$. Above 1.5, $\langle \tilde{G}_r \rangle$ is clearly negative. A maximum positive $\langle \tilde{G}_r \rangle$ value is expected about $a_r = 1$ which would be the value of a_r at the equilibrium state. $a_1 \cong a_2 \cong \Delta/2$ is expected in the equilibrium configuration of the cross-slip mechanism (*Figure 3*). A further expansion of the loop from that position

would correspond to $d < \tilde{G}_r >= 0$. Under such conditions, the cross-slip process is completed allowing motion of the perfect dislocation in the cross-slip plane. We stress that at the beginning of the cross-slip process (*Figure 3*), θ is expected to be close to $\pi/2$; this is appreciated using *Figure 2*.

Figure 4 : $<\tilde{G}_r > (1)$ as a function of ϕ_0 for $\theta = \pi / 2$ and $\theta_0 = \pi / 2$. This corresponds to the cross-slip system $[011](11\overline{1}) (\phi_0 = \pi / 2)$. $M_{12} = M_{13} = 10^{-4}$, $v_A(1) = v_A(3) = 1/3$, $a_r = 3 / 4$, copper

IV - DISCUSSION

Assuming the dislocation elliptical in the cross-slip plane at the beginning (*Figure 3*), $\langle G \rangle$ obtained in [1] applies. Fixing $\theta = \pi/2$ means maintaining a_1 close to zero ($a_1 \Box 0$) from the definition of θ [1]: we have $\tan \theta = OO'/a_1$ (*Figure 2*). At $\phi_0 = \pi/2$ (*Figure 3*), the tensile stress along x'_3 is $\sigma''_{33} = \sigma^a_{22}$ allowing a_2 to increase. Under such conditions, a_2 can be larger than a_1 , meaning that $a_r = a_1/a_2 < 1$. $\langle \tilde{G}_r \rangle$ values in *Figure 4* conform to these conditions; positive local maximum of $\langle \tilde{G}_r \rangle$ is at $\phi_0 = \pi/2$. This is the equilibrium state $d < \tilde{G}_r >= 0$ of the cross-slip event. Another observed maximum is at $\phi_0 = \pi$. This would correspond to other mechanisms such as twinning and fracture. We can comment about the positive minimum of $\langle \tilde{G}_r \rangle$

Figure 5: $<\tilde{G}_r > (1)$ as a function of a_r for $\theta = \pi / 2$ and the cross-slip system [011](111) ($\theta_0 = \phi_0 = \pi/2$). $M_{12} = M_{13} = 10^{-4}$, $v_A(1) = v_A(3) = 1/3$, $a_r = 3 / 4$, copper

observed at $\phi_0 = 0$ (*Figure 4*) : using *Figure 3*, the tension along x_1 is $\sigma_{11}^{A} = \sigma_{22}^{a}$ allowing a_1 to increase, but this is hindered by the condition $\theta = \pi/2$ ($a_1 \Box 0$); Poisson stress is compressive and reads $\sigma_{33}^{A} = -v_A(3)\sigma_{22}^{a}$ hindering also the increase of a_2 . Under such conditions $\phi_0 = 0$ is not favoured in *Figure 4*. In summary, the analysis of *Part I* [1] predicts the observed crossslip system [011](111) of the face-centred-cubic (FCC) structure using the configuration of the screw dislocation, at an arbitrary time *t*, given by *Figure 3*. Earliest works [9 - 12] on cross-slip have used configuration like *Figure 3*.

Figure 6 : Configuration, under load, of the screw dislocation in the crossslip process between basal planes of CPH structure

We next make a discussion on cross-slip in close packed hexagonal (CPH) structure. A configuration under load, at a given time t, of the cross-slip event between basal planes is depicted in *Figure 6*. The dissociation of the dislocation occurs in parallel planes. It is again assumed an elliptical shape for the dislocation on the cross-slip plane at the beginning of the process. The configuration out of the deviation plane remains unchanged during an increase of time dt; this means that d < G >= 0 there; hence the change in <G > is entirely carried by the elliptical dislocation. This means that the treatment of *Part I* [1] applies for CPH structures. *Figure 6* is considered in previous works [13, 14].

V - CONCLUSION

Assuming the shape of the dislocation elliptical (*Figure 3*) in the cross-slip plane at the beginning of the cross-slip process, it is shown that $\langle G \rangle$, a measure of the energy release rate, obtained in *Part I* [1] of this study applies. $\frac{1}{2} \langle 110 \rangle$ {111} cross-slip systems, observed in [112] copper single crystals deformed through *stage III* in constant strain rates above room temperature, do correspond to positive local $\langle G \rangle$ maxima. It is also suggested that the same treatment applies to the cross-slip between parallel basal planes in close packed hexagonal (CPH) structures.

REFERENCES

- P. N. B. ANONGBA, Conoidal crack with elliptic bases, within cubic crystals, under arbitrarily applied loadings I. Dislocations, crack-tip stress and crack extension force, (a) *Rev. Ivoir. Sci. Technol.*, 43 (2024) 100 121; (b) *ResearchGate*, DOI: 10.13140/RG.2.2.21165.67044
- P. N. B. ANONGBA, Conoidal crack with elliptic bases, within cubic crystals, under arbitrarily applied loadings II. Application to mechanical twinning of [112] copper single crystals, (a) *Rev. Ivoir. Sci. Technol.*, 43 (2024) 122 131; (b) *ResearchGate*, DOI: 10.13140/RG.2.2.33154.70085
- [3] P. N. B. ANONGBA, Conoidal crack with elliptic bases, within cubic crystals, under arbitrarily applied loadings – III. Application to brittle fracture systems of CoSi₂ single crystals, (a) *Rev. Ivoir. Sci. Technol.*, submitted; (b) *ResearchGate*, DOI: 10.13140/RG.2.2.34719.37282
- [4] P. N. B. ANONGBA, Doctorate thesis No. 826, EPFL, Lausanne, (1989)
- [5] P. N. B. ANONGBA, J. BONNEVILLE and J.-L. MARTIN, Hardening stages of [112] oriented copper single crystals at intermediate and high temperatures, Proceedings of the 8th International Conference of the Strength of Metals and Alloys (ICSMA – 8), Tampere, Finland, Vol. 1, (1988) 265 - 270

- [6] P. N. B. ANONGBA, J. BONNEVILLE and J.-L. MARTIN, Hardening stages of [112] copper single crystals at intermediate and high temperature-I. Mechanical behaviour, *Acta metal. Mater.*, 41 (1993) 2897 - 2906
- [7] P. N. B. ANONGBA, J. BONNEVILLE and J.-L. MARTIN, Hardening stages of [112] copper single crystals at intermediate and high temperature-II. Slip systems and microstructures, *Acta metal. Mater.*, 41 (1993) 2907 - 2922
- [8] H. M. LEDBETTER and E.R. NAIMON, Elastic properties of metals and alloys. II. Copper, J. Phys. Chem. Ref. Data, Vol. 3, N°4, (1974) 897 - 935
- [9] J. FRIEDEL, "Dislocations", Pergamon Press, Paris, (1964)
- [10] G. SCHOECK and A. SEEGER, Report of the Bristol Conference on Defects in Crystalline Solids, *Physical Society*, London, (1955) 340 p.
- [11] H. WOLF, Z. Naturf. (A), 15 (1960) 180
- [12] J. BONNEVILLE, B. ESCAIG and J. L. MARTIN, A study of cross-slip activation parameters in pure copper, *Acta metall.*, 36 (1988) 1989 2002
- [13] M. S. DUESBERY and P. B. HIRSCH, in Dislocation Dynamics (Battelle Colloquium, Seattle-Harrison, 1967) Rosenfield, A. et al., Eds. (Mc Graw-Hill Book Co., New York), (1968) 57 p.
- [14] B. ESCAIG, L'activation thermique des déviations sous faibles contraintes dans les structures h.c. et c.c., *phys. Stat. Sol.* 28 (1968) 463 474