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ABSTRACT 
 

The present study aims at providing expressions of the crack-tip stress and 

crack extension force when a non-planar crack of arbitrary shape with localized 

plastic yielding at its tips is loaded in mixed mode I+II+III. The considered 

model is a non-planar crack surrounded by a plastic zone with a dislocation-

free zone DFZ in between, inside an infinitely extended elastic medium. The 

loadings, tension 
a

22 and shears 
a

12  and a

23 , are applied along the x2, x1 and 

x3 directions at infinity, respectively. In addition, the treatment includes normal 

induced stresses which result from the Poisson’s effect, acting perpendicularly 

to the direction of applied tension. The crack front is planar in x2x3, has an 

average elevation h= h(x1) from Ox1x3 and fluctuates weakly there in the form 

ξ= ξ (x1, x3). The crack is represented by a continuous distribution of three 

types J (J = I, II and III) of infinitesimal dislocations having the shape of its 

front, with Burgers vectors (0, b, 0), (b, 0, 0) and (0, 0, b), respectively, directed 

along the applied loadings. The plastic region is on the average fracture plane 

and is also represented by these three types of dislocations with the exception 

that they are now straight dislocations parallel to x3. Then distribution functions 

DJ of straight dislocation arrays, corresponding to an elastic-plastic crack π0, 

inclined by an angle θ0 with respect to Ox1x3, are calculated. Adopting these 

DJ, we propose explicit expressions of the crack-tip stresses and crack 

extension force per unit length of the crack front for a non-planar crack front 
of arbitrary shape. Except for a difference in the value of the stress intensity factor, 

that now incorporates the length of the DFZ and plastic zone, these quantities are 

identical with those of an isolated non-planar crack. This makes it possible to 

analyse brittle failure and fracture with crack-tip plasticity in the same way.   
 

Keywords : fracture mechanics, dislocation, crack-tip stress, energy release rate.  
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RÉSUMÉ 
 

Fissure non plane avec une zone plastique en tête de fissure sous 

sollicitation extérieure arbitraire  
 

La présente étude fournit des expressions des contraintes en tête de fissure et 

force d'extension de fissure lorsqu'une fissure non plane de forme arbitraire, 

avec de la plasticité localisée à ses extrémités, est sollicitée en mode mixte 

I+II+III. Le modèle considéré est une fissure non plane entourée d'une région 

plastique entre lesquelles existe une zone libre de dislocation, à l'intérieur d'un 

milieu élastique infiniment étendu. La tension et les cisaillements sont 

appliqués le long des directions x2, x1 et x3 à l'infini, respectivement. De plus, 

le traitement inclut des contraintes induites normales, résultant de l’effet de 

Poisson et agissant perpendiculairement à la direction de la tension appliquée. 

Le front de fissure est plan parallèle à x2x3, a une côte moyenne h = h(x1) par 

rapport à Ox1x3 et ondule faiblement sous la forme ξ= ξ (x1, x3) à cette hauteur. 

La fissure est représentée par une distribution continue de trois types J (J=I, II 

et III) de dislocation ayant la forme du front de fissure. Leurs vecteurs de 

Burgers bJ sont dirigés le long de la tension et des cisaillements appliqués, 

respectivement. La région plastique est sur le plan de fracture moyen et est 

également représentée par ces trois types de dislocation, à l'exception qu'il 

s'agit maintenant de dislocations droites parallèles à x3. Puis des fonctions de 

distribution DJ de dislocations droites, correspondant à une fissure élastique-

plastique π0, inclinée d'un angle θ0 par rapport à Ox1x3, sont déterminées. En 

adoptant ces DJ, nous proposons des expressions explicites des contraintes en 

tête de fissure et de la force d'extension de fissure G (par unité de longueur du 

front de fissure), pour une fissure non plane de forme arbitraire. Exceptée une 

différence dans la valeur du facteur d'intensité de contrainte, qui intègre 

désormais les dimensions de la zone plastique et celle libre de dislocation, les 

grandeurs obtenues sont identiques à celles d'une fissure non plane isolée. Ce 

qui permet d'analyser de la même manière la rupture fragile et celle associée à 

de la plasticité localisée en tête de fissure. 
 

Mots-clés : mécanique de la rupture, dislocation, force d’extension de la 

fissure, contrainte en tête de fissure.  

 

 

I - INTRODUCTION 
 

The spread of plastic yielding from a planar straight-fronted crack in a solid 

has been studied theoretically and experimentally [1 - 3]. One common 

description of cracking and plasticity in terms of dislocations has been 

introduced in the modelling [2] : both the crack and the plastic region are 
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represented by continuous distributions of dislocations with infinitesimal 
Burgers vector b. On further modelling, a dislocation free zone (DFZ) between the 

crack and the physical dislocations has been included into the analysis [4 - 7]. This 

allows high stresses to be attained at the tip of the crack, a necessary condition 

for brittle fracture propagation, and common crack tip behaviors between 

isolated cracks and cracks surrounded by physically observable dislocations 

(using transmission electron microscopy, for example). Hence, there is one-one 

similarity in form (in both cases) of crack characteristic quantities : crack 

dislocation distribution 
0

JD  and corresponding relative displacement 0

J  of the 

faces of the crack, crack-tip stress 0

J  and crack extension force 0

JG . If the 

initiation of crack propagation occurs while the configuration of the plastic 

zone is fixed, it is evident that the crack extension force will be unchanged in 

form. This assumption is applicable to several experiments [8, 9]. However, 

this restriction is not mandatory. If no stress singularity exists at the boundary 

of the plastic zone, the crack extension force will remain unchanged. 

Considering in Ox1x3, a planar crack of finite extension 
1x c  along x1 

surrounded by plastic zone of extension 
1e x a  , (e > c), both running 

indefinitely along x3 under mode of applied loading  J (J=I, II and III), we have  
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E, µ and ν are Young and shear modules and Poisson’s ratio respectively;

1 / 2 (1 )C b  = − , 2 / 2C b = , s1 = c -x1 (0< s1 << c), s= x1-c  (0< s << c); 

δij  is the Kronecker delta; 0

JK  is the stress intensity factor,  it reads ([4 - 7]; see 

also below, in the present work) 
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F and   are elliptic integrals of first and third kind, respectively; (0)a

J  takes 

the values 
a

22 (J = I), 
a

12 (J = II),  and a

23 (J = III) corresponding to the remote 

applied tension along x2 and shears parallel to x1 and x3, respectively. In 0

JK  

(2), the factor in curly brackets { } is the stress intensity factor for an isolated 
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crack of finite length 2c. From above, it is convincing that brittle isolated crack 

and crack under crack-tip yielding can be analysed in the same way, equating 

0

JG  to twice the surface energy under pure mode J of applied loading. So far, 

only planar cracks are considered; however as stressed by [7], dislocation 

generation from the tip of the crack modifies the shape of the crack from planar 

to non-planar. Equally well, under mixed mode I+II+III loading, the applied 

shearing stresses promote non-planar crack motion (we may refer to [10,11] 

and references there in). In these cases, results like (1) and (2) now depend on 

the shape of the non-planar crack-front and orientation of the average fracture 

plane with respect of the applied loadings. The aim of the present study is to 

analyse a model of non-planar crack with associated DFZ and plastic domain 

under mixed mode I+II+III, on the similar lines, describing crack and plastic 

zone as continuous distributions of infinitesimal dislocations. In Section 2, the 

model and methodology of analysis is presented. Section 3 and 4 are devoted 

to results and discussion. Section 5 gives a conclusion to this study.  

 

 

II - METHODOLOGY  
 

The non-planar crack model and associated treatment are like those of [10, 11]. 

Along x1, the crack extends from x1 = - c to c with a x2x3-planar front. It is 

represented by a continuous distribution of three families J (J=I, II and III) of 

infinitesimal dislocations (types I and II are edges on average and type III 

screws). The identical shape f of the dislocations spreads in x2x3 and depends 

on x1 and x3 in the form  
 

( ) )(),()(cossin 131133 xhxxxhxxf nnnn

n

+++=  .                           (3) 

 

Here n is a positive integer; h, n , n  and n  are real that are −1x dependent. 

On both sides of the crack, a dislocation free zone 
1c x e   and plastic region

1e x a   are present. In the plastic zone, the dislocations J are straight 

parallel to x3 and cover the average fracture surface x2= h(x1). In both the crack 

and plastic region, the dislocation J (J=I, II and III) Burgers vectors are 

)0,,0( bbI =


,  )0,0,(bbII =


and ),0,0( bbIII =


, respectively. The medium is 

infinite, isotropic and elastic, subjected at infinity to uniform applied tension 
a

22 and shears 
a

12  and a

23 . In addition, the treatment includes normal induced 

stresses 11 22

a a

A  = −  and 33 22

a a

A  = −  ( A = ). The notation A permits to 

identify in the various listed mathematical expressions below, those associated 

with these induced normal stresses. The dislocation distribution functions DJ 
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(J= I , II and III) are defined such that ' '

1 1( )JD x dx  represents the number of 

dislocations J in the infinitesimal
1x − interval '

1dx  located about the 
1x − spatial 

position '

1x . Let ( ) be the total stress at any spatial position P (x1, x2, x3) in 

the medium. It can be written  
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( ) fr  is the friction stress opposing the motion of the dislocations in the plastic 

region. We assume that no friction stress acts on the crack dislocations (i.e. 

these are slipping and climbing freely).  
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( )J

ij is the stress due to the dislocation J located at spatial position '

1 1x x=  in 

the distribution. We are concerned with finding the equilibrium distribution DJ 

of the dislocations under the combined action of their mutual repulsion, the 

force exerted on them by the applied stresses and the friction stress. The 

equilibrium condition is equivalent to asking that at any spatial position on the 

crack and plastic zone, the tractions are zero: 
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Additional requirement is that the stresses at the boundary of the plastic zone 

are bounded. This corresponds to ( ) ( ) 0J JD e D a =  = . When DJ from (7) is 

known, the relative displacement of the faces of the crack, the crack-tip stress 

and crack extension force are derived by integration. In its general form, (7) 

requires a numerical resolution. Fortunately, as performed below, approximate 

expressions for the crack-tip stresses and crack extension force with f  (3) can 

be given, taking for DJ those of straight dislocation arrangements obtained in 

Section 3 below; this is the usual procedure in our works [10, 11]. Figure 1 
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and 2 are schematical representations of simple special elastic – plastic cracks 

captured by the modelling. The crack and plastic zone cover the x1- intervals 

1x c  and 
1e x a   with DFZ in between; these must be considered running 

indefinitely in the x3- direction. The crack shape in planes perpendicular to 1x  

is described by  (Figure 2a for example). The shape f  of the crack in planes 

perpendicular to 3x  is given by both  , through the −1x dependence of 

positive quantities n , n  and n (Equation (3)), and function )( 1xhh = . Since 

  is assumed to be small oscillating function, the average fracture surface is 

described correctly by the equation )( 12 xhx = . When 0= , the crack 

dislocations are straight parallel to 3x  and distributed over the surface 

)( 12 xhx = . The plastic region dislocations are straight parallel to x3 and cover 

the average fracture surface )( 12 xhx =  Specific examples are given in          

Figure 1 and 2 where the plastic region for positive x1 only is shown  :  

• 101)( xpxh =  ( 00 p ) and 0= . This corresponds to a planar elastic 

– plastic crack 0 (with a straight front parallel to 3x ) rotated around 

3Ox  by angle 0

1

0 tan p−=  from 31xOx , Figure 1a.  

• )( 1xh  is an arbitrary function of 1x , 0= . The sketch in Figure 1b 

corresponds to h  odd although this is not mandatory. Actually h odd 

conforms well to homogeneity of the medium, geometry of the applied 

loadings and DJ (Section 3) approximation adopted in the present study. 
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Figure 1 : Simple special elastic – plastic cracks. (a) Inclined planar elastic 

– plastic crack 0 (see text). (b) A non-planar elastic – plastic 

crack (parallel to 3x ) as h odd function of 1x  ( )( 12 xhx = ) 

 

• 101)( xpxh =  ( 00 p ) and )( 3x =  independent of 1x . The crack 

fluctuates about plane 0 with a front spreading in planes parallel to 

32xx  in the form  . In the example displayed in Figure 2a the crack 

consists of planar facets with inclination angles A  and B  (Figure 2b) 

at points A and B of the crack front located on the average fracture 

plane. Points A and B are indicated in Figure 2a.  
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Figure 2 : Special elastic – plastic crack. (a) Non-planar elastic crack 

fluctuating about an average inclined plane 0 . The crack consists of 

planar facets; its fronts at 1x c=   lie in −32xx planes. At 1x c= , the 

crack front is characterized by inclination angles A  and B  (see (b)) at 

points A and B located on the average fracture plane. The plastic zone 

lies on π0. (b) Sketch of the crack front in (a) with B taken as origin 

 

 

III - RESULTS  
 

III-1. Dislocation distributions  
 

Assume first that the dislocations are straight parallel to the −3x direction

)0( = and 101)( xpxh =  depends linearly on 1x  with 0p  positive constant. 

This corresponds to a planar elastic – plastic crack ( 0  in Figure 1a) of finite 

extension (with straight fronts running indefinitely along 3x ) rotated about the 

positive −3x direction by 0

1

0 tan p−=  from 31xOx . The elastic – plastic crack 

(
1x c , 

1e x a  ) is subjected to mixed mode I+II+III with loadings applied 

at infinity. Under such conditions 011 // pxhxf ==  and 

0// 33 == xxf  ; the condition (7) for the elastic – plastic crack faces to be 

free from tractions becomes: 
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1x c  
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23
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1e x a   
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22 0 12( )a fr fr a fr

I I I Ip     = − −  − , 
12 0 11( )a fr fr a fr

II II II IIp     = − −  −  and 

23

a fr a fr

III III III III    = −  −   

 

The solution to (8) is known in terms of the Jacobi’s zeta function Z (φ, k) [7]. 
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For 
1e x a   
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It must be attached to this solution of DJ [7] the following relation between the 

applied stresses, friction stresses, and size of the elastic – plastic crack 
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Because 0( )a a

J J p =  and 
0( )fr fr

J J p =  (see about (8)) depend on p0, relation 

(11) is valid for all p0; this leads to 
0 0( ) / ( ) (0) / (0)a fr a fr

J J J Jp p   = constant 

with p0 . It can thus be written 
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Where 
0

JD  is the value of DJ (9, 10) at p0 = 0; 
0

JD (J= I, II and III) corresponds 

to the equilibrium distribution of straight dislocations J when the elastic – 

plastic crack is planar in Ox1x3.  
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The relative displacement C

J  of the faces of the crack, in the x2 (J = I), x1 (J = 

II) and x3 (J = III) directions reads 
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where  

0

CJ  is the value of C

J  at p0 = 0 (see relation (16) in [7] for J = I). We have  

 

     
 

2 2 2 22 2

1 1
0 2 2 22 2

1 2 1

2 (0) ( )( )( / 2, )( )

( )

fr
CJ J

JI JII JIII

b a x c xF k e c

C C e xe a c

 


   

 − −−
= 

+ + −−

 

                          ( ) 2

1 1 1 3 1
ˆ, ( ), , ( ),

2 2

ek
F k x Z x k ek F k D x

c

 
 

     
−     

     
 

                                          3 1
ˆ( ), ,

2

ek
F x D k

c




   
−    

    
,   

1x c                      (15) 
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, 1e x a  .  (17) 

 

The total number ea

JN  of dislocations J between e and a is thus  
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2 2 2 2 2 2 2

1

( ) ( / 2, / , )e c a c e k c k
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− − 
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As performed below, we can reasonably give approximate expressions for the 

stress about the crack front in the DFZ and crack extension force with f given 

by (3) when the average fracture surface h can be approximated by plane π0 of 

Figure 1a.  

 

III-2. Stresses about the crack front and crack extension force  

 

We would like to express the total stress ij (4), ahead of the front of the crack 

with shape f (3), at x1 = c in the DFZ. Writing x1 = c + s, 0 < s <<c, ij  is 

given by the following formula  
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III c
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ij ij J

c cJ I
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with δc << c and x2 close to h(c). Then, proceeding exactly as in our previous 

works [10, 11] taking for DJ the straight edge and screw dislocation 

distributions (12) corresponding to an elastic – plastic planar crack π0 with a 

straight front parallel to x3 (Figure 1a), we obtain (
( ) ( ) ( )I II III

ij ij ij ij    + +  (6)): 
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where subscripts i and j take the values (1, 2 and 3) and (1 and 2) respectively; 

1( ) /p h c x=   , 0

JK ( J = I, II and III respectively) is given by (2). It is stressed 

again that s, 2x  and 3x  are arbitrary, 1s x c c= −   ( 0s ) and 2( ( ))x h c−  is 
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small. The parameter 0p  in (20) originates from a planar crack 0  (Figure 1a) 

hypothetically assumed to approximate the average fracture surface )( 12 xhx = . 

One observes that (20) and the relation (10) in [11] are identical. The crack 

extension force G (per unit length of the crack front) is calculated in the same 

way as for the isolated non-planar crack [10, 11]. We define a reduced crack 

extension force G  as 
0 0 0/ ( )I II IIIG G G G G= + +  with 0

JG  given in (1) and obtain 

at 0 2 3( , , )P c x f x= (with aaM 221212 / , aaM 222313 / , aaM 122323 / ) 
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(22) is identical to the corresponding one for the isolated crack (see (16) in [11]). 

Expression (22) gives G  for any arbitrary shape f (3) of the crack front. Since 

fracture over large distance proceeds through the motion of a macroscopic 

length of the crack front, the relevant quantity is < G >, the value of G  averaged 

over the length of the crack front. < G > for several special isolated crack fronts 

have been provided: straight, sinusoidal, segmented [10 - 13]. All these results 

apply here i.e. when the crack front is associated with localized plastic yielding. 
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The expected crack configuration after fracture propagation over large distance 

is the one that maximizes < G > under the Griffith condition <G >max = 2γ 

where γ is the surface energy.  

 

 

IV - DISCUSSION 
 

The reduced crack extension force G (22) for the elastic – plastic crack is 

identical to that of the isolated crack given in [11]. Consequently the various 

graphical representations of < G > in [11], as a function of parameters (p, p0, 

pA, pB; M12, M13; νA), for simple special isolated cracks are unchanged for the 

elastic-plastic cracks (see Figure 1 and 2, for example). From these works, 

non-planar crack configurations exist for which the crack extension force < G 

> is larger than that of the planar crack in Ox1x3, thus corroborating the 

occurrence of non-planar fracture abundantly observed in real materials. We 

shall add one more observation on the value of < G > on inverting the sign of the 

applied shears 
a

12  and 
a

23 . We first consider the planar crack π0 (Figure 1a) 

under mode I+II loading ( a

23 = 0). We have 
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Inverting the sign of 
12

a  from positive to negative (i.e. M12 < 0) increases G . 

M12 < 0 corresponds to applying the shear in the negative x1- direction when 

the specimen is suffering tension ( 22

a > 0) along x2. If the specimen is under 

fatigue by inverting the sign of 
12

a  only, this asymmetry implies that this is 

the condition 2G =  (M12 > 0) that controls the complete failure of the fracture 

material. A similar behaviour is found with 
23

a  for the non-planar crack with 

a segmented crack front (Figure 2a). We have in tension under mixed mode 

I+III (
12

a = 0) (see also (20) in [11]) : 
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( )( )2 2 2 2

1 0 0/ ( ) 1/ 1 1/ 1A B A B B Av p p p p p p p p= + + + − + +  

 

AAp tan= , BBp tan=  (see Figure 2b for A  and B ). If pA = pB , v1 = 0 and 
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there is no asymmetry on inverting the sign of the shear 
23

a . However if  pA   

pB , v1  0 and an asymmetry does exist. The controlling <G > will be the 

smallest one depending on the values of pA compared with pB. Similarly, one 

may invert the sign of 22

a  (< 0) and maintains the shearing stresses positive. 

Under such conditions (23) and (24) are unchanged; this leads to same 

asymmetries (note that 22

a  replaces 
23

a  in the left hand side in (24)). One 

notes that Poisson’s stress 11 22

a a

A  = −  is tensile positive and opens the crack 

faces when p0 is different from zero.  

 

 

V - CONCLUSION 
 

Non-planar elastic-plastic cracks have been studied. These are of finite 

extension along x1 and x2 and infinite in the x3- direction, inside an infinitely 

extended elastic medium, subjected to mixed mode I+II+III loading. The 

loadings, tension 
a

22 and shears 
a

12  and a

23 , are applied along the x2, x1 and 

x3 directions at infinity, respectively. The front of the crack is planar in x2x3, 

has an average elevation h = h(x1) from Ox1x3 and fluctuates weakly there in 

the form ξ (3). The plastic region is described by x2 = h(x1) with a straight front 

parallel to x3. The crack and plastic zone are represented by a continuous 

distribution of three types J of infinitesimal dislocation with Burgers vectors 

directed along the applied loadings. Distribution functions DJ of straight 

dislocation arrays corresponding to an elastic-plastic crack π0 (Figure 1a), 

inclined by angle θ0 with respect to Ox1x3 are calculated. Adopting these DJ, 

explicit expressions of the crack-tip stresses and crack extension force per unit 

length of the crack front, for the general crack front f (3), are evaluated. Except 

for a difference in the value of the stress intensity factor, that now depends on 

the size of the elastic-plastic crack, these quantities agree with those of the 

isolated crack. Hence both types of crack can be treated in the equal manner.   
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