NON-PLANAR CRACK WITH CRACK-FRONT PLASTIC YIELDING UNDER GENERAL LOADING

P. N. B. ANONGBA
Université F.H.B. de Cocody, U.F.R. Sciences des Structures de la Matière et de Technologie, 22 BP 582 Abidjan 22, Côte d'Ivoire

(reçu le 10 Avril 2021 ; accepté le 18 Mai 2021)

[^0]
Abstract

The present study aims at providing expressions of the crack-tip stress and crack extension force when a non-planar crack of arbitrary shape with localized plastic yielding at its tips is loaded in mixed mode $I+I I+I I I$. The considered model is a non-planar crack surrounded by a plastic zone with a dislocationfree zone DFZ in between, inside an infinitely extended elastic medium. The loadings, tension σ_{22}^{a} and shears σ_{12}^{a} and σ_{23}^{a}, are applied along the x_{2}, x_{1} and x_{3} directions at infinity, respectively. In addition, the treatment includes normal induced stresses which result from the Poisson's effect, acting perpendicularly to the direction of applied tension. The crack front is planar in $x_{2} x_{3}$, has an average elevation $h=h\left(x_{1}\right)$ from $O x_{1} x_{3}$ and fluctuates weakly there in the form $\xi=\xi\left(x_{1}, x_{3}\right)$. The crack is represented by a continuous distribution of three types $J(J=I, I I$ and III) of infinitesimal dislocations having the shape of its front, with Burgers vectors $(0, b, 0),(b, 0,0)$ and $(0,0, b)$, respectively, directed along the applied loadings. The plastic region is on the average fracture plane and is also represented by these three types of dislocations with the exception that they are now straight dislocations parallel to x_{3}. Then distribution functions D_{J} of straight dislocation arrays, corresponding to an elastic-plastic crack π_{0}, inclined by an angle θ_{0} with respect to $O x_{1} x_{3}$, are calculated. Adopting these D_{J}, we propose explicit expressions of the crack-tip stresses and crack extension force per unit length of the crack front for a non-planar crack front of arbitrary shape. Except for a difference in the value of the stress intensity factor, that now incorporates the length of the DFZ and plastic zone, these quantities are identical with those of an isolated non-planar crack. This makes it possible to analyse brittle failure and fracture with crack-tip plasticity in the same way.

Keywords : fracture mechanics, dislocation, crack-tip stress, energy release rate.

RÉSUMÉ

Fissure non plane avec une zone plastique en tête de fissure sous sollicitation extérieure arbitraire

La présente étude fournit des expressions des contraintes en tête de fissure et force d'extension de fissure lorsqu'une fissure non plane de forme arbitraire, avec de la plasticité localisée à ses extrémités, est sollicitée en mode mixte $I+I I+I I I$. Le modèle considéré est une fissure non plane entourée d'une région plastique entre lesquelles existe une zone libre de dislocation, à l'intérieur d'un milieu élastique infiniment étendu. La tension et les cisaillements sont appliqués le long des directions x_{2}, x_{1} et x_{3} à l'infini, respectivement. De plus, le traitement inclut des contraintes induites normales, résultant de l'effet de Poisson et agissant perpendiculairement à la direction de la tension appliquée. Le front de fissure est plan parallèle à $x_{2} x_{3}$, a une côte moyenne $h=h\left(x_{1}\right)$ par rapport à $O x_{1} x_{3}$ et ondule faiblement sous la forme $\xi=\xi\left(x_{1}, x_{3}\right)$ à cette hauteur. La fissure est représentée par une distribution continue de trois types J ($J=I, I I$ et III) de dislocation ayant la forme du front de fissure. Leurs vecteurs de Burgers \boldsymbol{b}_{J} sont dirigés le long de la tension et des cisaillements appliqués, respectivement. La région plastique est sur le plan de fracture moyen et est également représentée par ces trois types de dislocation, à l'exception qu'il s'agit maintenant de dislocations droites parallèles à x_{3}. Puis des fonctions de distribution D_{J} de dislocations droites, correspondant à une fissure élastiqueplastique π_{0}, inclinée d'un angle θ_{0} par rapport à $O x_{1} x_{3}$, sont déterminées. En adoptant ces D_{J}, nous proposons des expressions explicites des contraintes en tête de fissure et de la force d'extension de fissure G (par unité de longueur du front de fissure), pour une fissure non plane de forme arbitraire. Exceptée une différence dans la valeur du facteur d'intensité de contrainte, qui intègre désormais les dimensions de la zone plastique et celle libre de dislocation, les grandeurs obtenues sont identiques à celles d'une fissure non plane isolée. Ce qui permet d'analyser de la même manière la rupture fragile et celle associée à de la plasticité localisée en tête de fissure.

Mots-clés : mécanique de la rupture, dislocation, force d'extension de la fissure, contrainte en tête de fissure.

I - INTRODUCTION

The spread of plastic yielding from a planar straight-fronted crack in a solid has been studied theoretically and experimentally [1-3]. One common description of cracking and plasticity in terms of dislocations has been introduced in the modelling [2] : both the crack and the plastic region are

P. N. B. ANONGBA

represented by continuous distributions of dislocations with infinitesimal Burgers vector b. On further modelling, a dislocation free zone (DFZ) between the crack and the physical dislocations has been included into the analysis [4-7]. This allows high stresses to be attained at the tip of the crack, a necessary condition for brittle fracture propagation, and common crack tip behaviors between isolated cracks and cracks surrounded by physically observable dislocations (using transmission electron microscopy, for example). Hence, there is one-one similarity in form (in both cases) of crack characteristic quantities : crack dislocation distribution D_{0}^{J} and corresponding relative displacement ϕ_{0}^{J} of the faces of the crack, crack-tip stress σ_{0}^{J} and crack extension force G_{0}^{J}. If the initiation of crack propagation occurs while the configuration of the plastic zone is fixed, it is evident that the crack extension force will be unchanged in form. This assumption is applicable to several experiments [8, 9]. However, this restriction is not mandatory. If no stress singularity exists at the boundary of the plastic zone, the crack extension force will remain unchanged. Considering in $O x_{1} x_{3}$, a planar crack of finite extension $\left|x_{1}\right| \leq c$ along x_{1} surrounded by plastic zone of extension $e \leq\left|x_{1}\right| \leq a,(e>c)$, both running indefinitely along x_{3} under mode of applied loading $J(J=I, I I$ and $I I I)$, we have

$$
\begin{align*}
D_{0}^{J} & =\frac{K_{J}^{0}}{\pi\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+\delta_{J I I I} C_{2}\right] \sqrt{2 \pi s_{1}}}, \phi_{0}^{J}=\frac{2 b K_{J}^{0} \sqrt{s_{1}}}{\pi\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+\delta_{J I I I} C_{2}\right] \sqrt{2 \pi}}, \\
\sigma_{0}^{J} & =\frac{K_{J}^{0}}{\sqrt{2 \pi s}}, \quad G_{0}^{J}=\frac{1-v^{2}}{E} K_{J}^{02}\left(\delta_{J I}+\delta_{J I I}\right)+\frac{1+v}{E} K_{I I I}^{0} \delta_{J I I I} \tag{1}
\end{align*}
$$

E, μ and v are Young and shear modules and Poisson's ratio respectively; $C_{1}=\mu b / 2 \pi(1-v), C_{2}=\mu b / 2 \pi, s_{1}=c-x_{1}\left(0<s_{1} \ll c\right), s=x_{1}-c(0<s \ll c) ;$ $\delta_{i j}$ is the Kronecker delta; K_{J}^{0} is the stress intensity factor, it reads ([4-7]; see also below, in the present work)

$$
\begin{equation*}
K_{J}^{0}=\left\{\sigma_{J}^{a}(0) \sqrt{\pi c}\right\} \frac{F(\pi / 2, k) \sqrt{a^{2}-c^{2}}}{\sqrt{e^{2}-c^{2}} \Pi\left(\pi / 2, e^{2} k^{2} / c^{2}, k\right)}, \quad k^{2}=\frac{c^{2}\left(a^{2}-e^{2}\right)}{e^{2}\left(a^{2}-c^{2}\right)} \tag{2}
\end{equation*}
$$

F and Π are elliptic integrals of first and third kind, respectively; $\sigma_{J}^{a}(0)$ takes the values $\sigma_{22}^{a}(J=I), \sigma_{12}^{a}(J=I I)$, and $\sigma_{23}^{a}(J=I I I)$ corresponding to the remote applied tension along x_{2} and shears parallel to x_{1} and x_{3}, respectively. In K_{J}^{0} (2), the factor in curly brackets $\}$ is the stress intensity factor for an isolated

P. N. B. ANONGBA

crack of finite length $2 c$. From above, it is convincing that brittle isolated crack and crack under crack-tip yielding can be analysed in the same way, equating G_{0}^{J} to twice the surface energy under pure mode J of applied loading. So far, only planar cracks are considered; however as stressed by [7], dislocation generation from the tip of the crack modifies the shape of the crack from planar to non-planar. Equally well, under mixed mode $I+I I+I I I$ loading, the applied shearing stresses promote non-planar crack motion (we may refer to [10,11] and references there in). In these cases, results like (1) and (2) now depend on the shape of the non-planar crack-front and orientation of the average fracture plane with respect of the applied loadings. The aim of the present study is to analyse a model of non-planar crack with associated DFZ and plastic domain under mixed mode $I+I I+I I I$, on the similar lines, describing crack and plastic zone as continuous distributions of infinitesimal dislocations. In Section 2, the model and methodology of analysis is presented. Section 3 and 4 are devoted to results and discussion. Section 5 gives a conclusion to this study.

II - METHODOLOGY

The non-planar crack model and associated treatment are like those of [10, 11]. Along x_{1}, the crack extends from $x_{1}=-c$ to c with a $x_{2} x_{3}$-planar front. It is represented by a continuous distribution of three families J ($J=I, I I$ and III) of infinitesimal dislocations (types I and $I I$ are edges on average and type $I I I$ screws). The identical shape f of the dislocations spreads in $x_{2} x_{3}$ and depends on x_{1} and x_{3} in the form

$$
\begin{equation*}
f=\sum_{n}\left(\xi_{n} \sin \kappa_{n} x_{3}+\delta_{n} \cos \kappa_{n} x_{3}\right)+h\left(x_{1}\right) \equiv \xi\left(x_{1}, x_{3}\right)+h\left(x_{1}\right) . \tag{3}
\end{equation*}
$$

Here n is a positive integer; h, ξ_{n}, δ_{n} and κ_{n} are real that are x_{1}-dependent. On both sides of the crack, a dislocation free zone $c \leq\left|x_{1}\right| \leq e$ and plastic region $e \leq\left|x_{1}\right| \leq a$ are present. In the plastic zone, the dislocations J are straight parallel to x_{3} and cover the average fracture surface $x_{2}=h\left(x_{1}\right)$. In both the crack and plastic region, the dislocation $J(J=I, I I$ and III) Burgers vectors are $\vec{b}_{I}=(0, b, 0), \quad \vec{b}_{I I}=(b, 0,0)$ and $\vec{b}_{I I}=(0,0, b)$, respectively. The medium is infinite, isotropic and elastic, subjected at infinity to uniform applied tension σ_{22}^{a} and shears σ_{12}^{a} and σ_{23}^{a}. In addition, the treatment includes normal induced stresses $\sigma_{11}^{a}=-v_{A} \sigma_{22}^{a}$ and $\sigma_{33}^{a}=-v_{A} \sigma_{22}^{a} \quad\left(v_{A}=v\right)$. The notation v_{A} permits to identify in the various listed mathematical expressions below, those associated with these induced normal stresses. The dislocation distribution functions D_{J}

P. N. B. ANONGBA

($J=I, I I$ and $I I I$) are defined such that $D_{J}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}$ represents the number of dislocations J in the infinitesimal x_{1} - interval $d x_{1}^{\prime}$ located about the x_{1} - spatial position x_{1}^{\prime}. Let $(\bar{\sigma})$ be the total stress at any spatial position $P\left(x_{1}, x_{2}, x_{3}\right)$ in the medium. It can be written

$$
\begin{align*}
& \bar{\sigma}_{i j}=\sigma_{i j}^{A}-\sigma_{i j}^{f r}+\sum_{J=I}^{I I I} \bar{\sigma}_{i j}^{(J)} \tag{4}\\
& (\sigma)^{A}=\left(\begin{array}{ccc}
-v_{A} \sigma_{22}^{a} & \sigma_{12}^{a} & 0 \\
\sigma_{12}^{a} & \sigma_{22}^{a} & \sigma_{23}^{a} \\
0 & \sigma_{23}^{a} & -v_{A} \sigma_{22}^{a}
\end{array}\right) \tag{5}
\end{align*}
$$

$(\sigma)^{f r}$ is the friction stress opposing the motion of the dislocations in the plastic region. We assume that no friction stress acts on the crack dislocations (i.e. these are slipping and climbing freely).
$\bar{\sigma}_{i j}^{(J)}=\left(\int_{-a}^{-e}+\int_{-c}^{c}+\int_{e}^{a}\right) \sigma_{i j}^{(J)}\left(x_{1}-x_{1}^{\prime}, x_{2}, x_{3}\right) D_{J}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}$
$\sigma_{i j}^{(J)}$ is the stress due to the dislocation J located at spatial position $x_{1}=x_{1}^{\prime}$ in the distribution. We are concerned with finding the equilibrium distribution D_{J} of the dislocations under the combined action of their mutual repulsion, the force exerted on them by the applied stresses and the friction stress. The equilibrium condition is equivalent to asking that at any spatial position on the crack and plastic zone, the tractions are zero:

$$
\left\{\begin{array}{l}
\bar{\sigma}_{12}-\partial f / \partial x_{1} \bar{\sigma}_{11}-\partial f / \partial x_{3} \bar{\sigma}_{13}=0 \tag{7}\\
\bar{\sigma}_{22}-\partial f / \partial x_{1} \bar{\sigma}_{12}-\partial f / \partial x_{3} \bar{\sigma}_{23}=0 . \\
\bar{\sigma}_{23}-\partial f / \partial x_{1} \bar{\sigma}_{13}-\partial f / \partial x_{3} \bar{\sigma}_{33}=0
\end{array} .\right.
$$

Additional requirement is that the stresses at the boundary of the plastic zone are bounded. This corresponds to $D_{J}(\pm e)=D_{J}(\pm a)=0$. When D_{J} from (7) is known, the relative displacement of the faces of the crack, the crack-tip stress and crack extension force are derived by integration. In its general form, (7) requires a numerical resolution. Fortunately, as performed below, approximate expressions for the crack-tip stresses and crack extension force with f (3) can be given, taking for D_{J} those of straight dislocation arrangements obtained in Section 3 below; this is the usual procedure in our works [10, 11]. Figure 1

P. N. B. ANONGBA

and 2 are schematical representations of simple special elastic - plastic cracks captured by the modelling. The crack and plastic zone cover the x_{1} - intervals $\left|x_{1}\right| \leq c$ and $e \leq\left|x_{1}\right| \leq a$ with DFZ in between; these must be considered running indefinitely in the x_{3}-direction. The crack shape in planes perpendicular to x_{1} is described by ξ (Figure $2 \boldsymbol{a}$ for example). The shape f of the crack in planes perpendicular to x_{3} is given by both ξ, through the x_{1}-dependence of positive quantities ξ_{n}, δ_{n} and κ_{n} (Equation (3)), and function $h=h\left(x_{1}\right)$. Since ξ is assumed to be small oscillating function, the average fracture surface is described correctly by the equation $x_{2}=h\left(x_{1}\right)$. When $\xi=0$, the crack dislocations are straight parallel to x_{3} and distributed over the surface $x_{2}=h\left(x_{1}\right)$. The plastic region dislocations are straight parallel to x_{3} and cover the average fracture surface $x_{2}=h\left(x_{1}\right)$ Specific examples are given in Figure 1 and 2 where the plastic region for positive x_{1} only is shown :

- $h\left(x_{1}\right)=p_{0} x_{1}\left(p_{0} \geq 0\right)$ and $\xi=0$. This corresponds to a planar elastic - plastic crack π_{0} (with a straight front parallel to x_{3}) rotated around $O x_{3}$ by angle $\theta_{0}=\tan ^{-1} p_{0}$ from $O x_{1} x_{3}$, Figure Ia.
- $h\left(x_{1}\right)$ is an arbitrary function of $x_{1}, \xi=0$. The sketch in Figure lb corresponds to h odd although this is not mandatory. Actually h odd conforms well to homogeneity of the medium, geometry of the applied loadings and D_{J} (Section 3) approximation adopted in the present study.

P. N. B. ANONGBA

Figure 1 : Simple special elastic - plastic cracks. (a) Inclined planar elastic - plastic crack π_{0} (see text). (b) A non-planar elastic - plastic crack (parallel to x_{3}) as hodd function of $x_{1}\left(x_{2}=h\left(x_{1}\right)\right)$

- $h\left(x_{1}\right)=p_{0} x_{1} \quad\left(p_{0} \geq 0\right)$ and $\xi=\xi\left(x_{3}\right)$ independent of x_{1}. The crack fluctuates about plane π_{0} with a front spreading in planes parallel to $x_{2} x_{3}$ in the form ξ. In the example displayed in Figure $2 \boldsymbol{a}$ the crack consists of planar facets with inclination angles ϕ_{A} and ϕ_{B} (Figure 2b) at points A and B of the crack front located on the average fracture plane. Points A and B are indicated in Figure 2a.

P. N. B. ANONGBA

Figure 2 : Special elastic - plastic crack. (a) Non-planar elastic crack fluctuating about an average inclined plane π_{0}. The crack consists of planar facets; its fronts at $x_{1}= \pm c$ lie in $x_{2} x_{3}$-planes. At $x_{1}=c$, the crack front is characterized by inclination angles ϕ_{A} and $\phi_{B}($ see (b)) at points A and B located on the average fracture plane. The plastic zone lies on π_{0}. (b) Sketch of the crack front in (a) with B taken as origin

III - RESULTS

III-1. Dislocation distributions

Assume first that the dislocations are straight parallel to the x_{3}-direction $(\xi=0)$ and $h\left(x_{1}\right)=p_{0} x_{1}$ depends linearly on x_{1} with p_{0} positive constant. This corresponds to a planar elastic - plastic crack (π_{0} in Figure 1a) of finite extension (with straight fronts running indefinitely along x_{3}) rotated about the positive x_{3}-direction by $\theta_{0}=\tan ^{-1} p_{0}$ from $O x_{1} x_{3}$. The elastic - plastic crack $\left(\left|x_{1}\right| \leq c, e \leq\left|x_{1}\right| \leq a\right)$ is subjected to mixed mode $I+I I+I I I$ with loadings applied at infinity. Under such conditions $\partial f / \partial x_{1}=\partial h / \partial x_{1}=p_{0} \quad$ and $\partial f / \partial x_{3}=\partial \xi / \partial x_{3}=0$; the condition (7) for the elastic - plastic crack faces to be free from tractions becomes:

$$
\begin{equation*}
\sigma_{J}+\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+C_{2} \delta_{J I I I}\right]\left(\int_{-a}^{-e}+\int_{-c}^{c}+\int_{e}^{a}\right) \frac{D_{J}\left(x_{1}^{\prime}\right)}{x_{1}-x_{1}^{\prime}} d x_{1}^{\prime}=0 \quad(J=I, I I \text { and } I I I) . \tag{8}
\end{equation*}
$$

For $\left|x_{1}\right| \leq c$

$$
\sigma_{I}=\sigma_{22}^{a}-p_{0} \sigma_{12}^{a} \equiv \sigma_{I}^{a}, \sigma_{I I}=\sigma_{12}^{a}+p_{0} v_{A} \sigma_{22}^{a} \equiv \sigma_{I I}^{a} \text { and } \sigma_{I I I}=\sigma_{23}^{a} \equiv \sigma_{I I I}^{a}
$$

For $e \leq\left|x_{1}\right| \leq a$

$$
\begin{aligned}
& \quad \sigma_{I}=\sigma_{I}^{a}-\left(\sigma_{22}^{f r}-p_{0} \sigma_{12}^{f r}\right) \equiv \sigma_{I}^{a}-\sigma_{I}^{f r}, \sigma_{I I}=\sigma_{I I}^{a}-\left(\sigma_{12}^{f r}-p_{0} \sigma_{11}^{f r}\right) \equiv \sigma_{I I}^{a}-\sigma_{I I}^{f r} \text { and } \\
& \sigma_{I I I}=\sigma_{I I I}^{a}-\sigma_{23}^{f r} \equiv \sigma_{I I I}^{a}-\sigma_{I I I}^{f r}
\end{aligned}
$$

The solution to (8) is known in terms of the Jacobi's zeta function $Z(\varphi, k)$ [7]. For $\left|x_{1}\right|<c$

$$
\begin{align*}
& D_{J}\left(x_{1}\right) \equiv D_{J}^{C}\left(x_{1}\right)= \frac{2 \sigma_{J}^{f r} F(\pi / 2, k)}{\pi^{2}\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+C_{2} \delta_{J I I I}\right]}\left(\frac{\left(e^{2}-c^{2}\right) x_{1}}{e \sqrt{a^{2}-c^{2}}}\right. \\
&\left.\times \sqrt{\frac{a^{2}-x_{1}^{2}}{\left(c^{2}-x_{1}^{2}\right)\left(e^{2}-x_{1}^{2}\right)}}+\operatorname{sgn}\left(x_{1}\right) Z\left(\beta_{1}\left(x_{1}\right), k\right)\right) \tag{9}
\end{align*}
$$

For $e \leq\left|x_{1}\right| \leq a$

$$
\begin{align*}
& D_{J}\left(x_{1}\right) \equiv D_{J}^{e a}\left(x_{1}\right)=\frac{2 \sigma_{J}^{f r} F(\pi / 2, k)}{\pi^{2}\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+C_{2} \delta_{J I I I}\right.} \operatorname{sgn}\left(x_{1}\right) Z\left(\beta_{2}\left(x_{1}\right), k\right) \tag{10}\\
& \beta_{1}\left(x_{1}\right)=\sin ^{-1}\left(1 / \sqrt{n\left(x_{1}\right)}\right), \beta_{2}\left(x_{1}\right)=\sin ^{-1}\left(\sqrt{n\left(x_{1}\right)} / k\right), k^{2}=\frac{c^{2}\left(a^{2}-e^{2}\right)}{e^{2}\left(a^{2}-c^{2}\right)}, \\
& n\left(x_{1}\right)=\frac{c^{2}\left(e^{2}-x_{1}^{2}\right)}{e^{2}\left(c^{2}-x_{1}^{2}\right)} .
\end{align*}
$$

It must be attached to this solution of D_{J} [7] the following relation between the applied stresses, friction stresses, and size of the elastic - plastic crack

$$
\begin{equation*}
\frac{\pi \sigma_{J}^{a}}{2 \sigma_{J}^{f r}}=\frac{e^{2}-c^{2}}{e \sqrt{a^{2}-c^{2}}} \Pi\left(\pi / 2, e^{2} k^{2} / c^{2}, k\right) \tag{11}
\end{equation*}
$$

Because $\sigma_{J}^{a}=\sigma_{J}^{a}\left(p_{0}\right)$ and $\sigma_{J}^{f r}=\sigma_{J}^{f r}\left(p_{0}\right)$ (see about (8)) depend on p_{0}, relation (11) is valid for all p_{0}; this leads to $\sigma_{J}^{a}\left(p_{0}\right) / \sigma_{J}^{f r}\left(p_{0}\right)=\sigma_{J}^{a}(0) / \sigma_{J}^{f r}(0)$ constant with p_{0}. It can thus be written

$$
\begin{equation*}
D_{J}\left(x_{1}\right)=\frac{\sigma_{J}^{a}\left(p_{0}\right)}{\sigma_{J}^{a}(0)} D_{0}^{J}\left(x_{1}\right) \tag{12}
\end{equation*}
$$

Where D_{0}^{J} is the value of $D_{J}(9,10)$ at $p_{0}=0 ; D_{0}^{J}(J=I, I I$ and III) corresponds to the equilibrium distribution of straight dislocations J when the elastic plastic crack is planar in $O x_{1} x_{3}$.
$\frac{\sigma_{I}^{a}\left(p_{0}\right)}{\sigma_{I}^{a}(0)}=1-p_{0} \frac{\sigma_{12}^{a}}{\sigma_{22}^{a}}, \quad \frac{\sigma_{I I}^{a}\left(p_{0}\right)}{\sigma_{I I}^{a}(0)}=1+p_{0} \frac{v_{A} \sigma_{22}^{a}}{\sigma_{12}^{a}}, \quad \frac{\sigma_{I I I}^{a}\left(p_{0}\right)}{\sigma_{I I I}^{a}(0)}=1$.
The relative displacement ϕ_{J}^{C} of the faces of the crack, in the $x_{2}(J=I), x_{1}(J=$ II) and $x_{3}(J=I I I)$ directions reads

$$
\phi_{J}^{c}\left(x_{1}\right)=\int_{x_{1}}^{c} b D_{J}^{c}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}, \quad\left|x_{1}\right| \leq c,
$$

which gives after integration
$\phi_{J}^{C}\left(x_{1}\right)=\frac{\sigma_{J}^{a}\left(p_{0}\right)}{\sigma_{J}^{a}(0)} \phi_{0}^{C J}\left(x_{1}\right)$
where
$\phi_{0}^{C J}$ is the value of ϕ_{J}^{C} at $p_{0}=0$ (see relation (16) in [7] for $J=I$). We have

$$
\begin{array}{r}
\phi_{0}^{C J}=\frac{2 b \sigma_{J}^{f r}(0)}{\pi^{2}\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+C_{2} \delta_{J I I I}\right]}\left(\frac{F(\pi / 2, k)\left(e^{2}-c^{2}\right)}{e \sqrt{a^{2}-c^{2}}} \sqrt{\frac{\left(a^{2}-x_{1}^{2}\right)\left(c^{2}-x_{1}^{2}\right)}{e^{2}-x_{1}^{2}}}\right. \\
-F\left(\frac{\pi}{2}, k\right)\left|x_{1}\right| Z\left(\beta_{1}\left(x_{1}\right), k\right)-e k^{2}\left[F\left(\frac{\pi}{2}, k\right) \hat{D}\left(\beta_{3}\left(x_{1}\right), \frac{e k}{c}\right)\right. \\
\left.\left.-F\left(\beta_{3}\left(x_{1}\right), \frac{e k}{c}\right) \hat{D}\left(\frac{\pi}{2}, k\right)\right]\right),\left|x_{1}\right| \leq c \tag{15}
\end{array}
$$

\hat{D} is a function of variables (φ, k) defined as $\hat{D}(\varphi, k)=(F(\varphi, k)-E(\varphi, k)) / k^{2}$ in which E is the elliptic integral of the second kind, $\beta_{3}\left(x_{1}\right)=\sin ^{-1}\left(c / e \sqrt{n\left(x_{1}\right)}\right)$. The number of dislocations J in the plastic zone between e and x_{1} is
$N_{J}^{e a}\left(x_{1}\right)=\frac{\sigma_{J}^{a}\left(p_{0}\right)}{\sigma_{J}^{a}(0)} N_{0}^{e a(J)}\left(x_{1}\right)$
where $N_{0}^{\text {ea(}()}$ is the value of $N_{J}^{e a}$ for $p_{0}=0$.

$$
N_{0}^{e a(J)}=\frac{2 \sigma_{J}^{f^{\prime}}(0)}{\pi^{2}\left[C_{1}\left(\delta_{J I}+\delta_{J I}\right)+C_{2} \delta_{J I I I}\right.}\left(F\left(\frac{\pi}{2}, k\right) x_{1} Z\left(\beta_{2}\left(x_{1}\right), k\right)\right.
$$

$$
\begin{equation*}
\left.+e k^{2}\left(F\left(\frac{\pi}{2}, k\right) \hat{D}\left(\beta_{2}\left(x_{1}\right), \frac{e k}{c}\right)-F\left(\beta_{2}\left(x_{1}\right), \frac{e k}{c}\right) \hat{D}\left(\frac{\pi}{2}, k\right)\right)\right), e \leq x_{1} \leq a . \tag{17}
\end{equation*}
$$

The total number $\bar{N}_{J}^{e a}$ of dislocations J between e and a is thus

$$
\begin{gather*}
\bar{N}_{J}^{e a}=\frac{\sigma_{J}^{a}\left(p_{0}\right)}{\sigma_{J}^{a}(0)} \frac{2 e \sigma_{J}^{f r}(0) k^{2}}{\pi^{2}\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+C_{2} \delta_{J I I}\right]}\left(F\left(\frac{\pi}{2}, k\right) \hat{D}\left(\frac{\pi}{2}, \frac{e k}{c}\right)-F\left(\frac{\pi}{2}, \frac{e k}{c}\right) \hat{D}\left(\frac{\pi}{2}, k\right)\right) \\
=\frac{\sigma_{J}^{a}\left(p_{0}\right)\left(a^{2}-e^{2}\right) c^{2}}{\pi\left[C_{1}\left(\delta_{J I}+\delta_{J I I}\right)+C_{2} \delta_{J I I}\right]}\left(F\left(\frac{\pi}{2}, k\right) \hat{D}\left(\frac{\pi}{2}, \frac{e k}{c}\right)-F\left(\frac{\pi}{2}, \frac{e k}{c}\right) \hat{D}\left(\frac{\pi}{2}, k\right)\right) \\
\times \frac{1}{\left(e^{2}-c^{2}\right) \sqrt{a^{2}-c^{2}} \Pi\left(\pi / 2, e^{2} k^{2} / c^{2}, k\right)} \tag{18}
\end{gather*}
$$

As performed below, we can reasonably give approximate expressions for the stress about the crack front in the DFZ and crack extension force with f given by (3) when the average fracture surface h can be approximated by plane π_{0} of Figure 1a.

III-2. Stresses about the crack front and crack extension force

We would like to express the total stress $\bar{\sigma}_{i j}(4)$, ahead of the front of the crack with shape $f(3)$, at $x_{1}=c$ in the DFZ. Writing $x_{1}=c+s, 0<s \ll c, \bar{\sigma}_{i j}$ is given by the following formula

$$
\begin{equation*}
\bar{\sigma}_{i j}\left(s, x_{2}, x_{3}\right)=\sum_{J=I c-\delta c}^{I I I} \int_{i j}^{c} \sigma_{i j}^{(J)}\left(c+s-x_{1}^{\prime}, x_{2}, x_{3}\right) D_{J}\left(x_{1}^{\prime}\right) d x_{1}^{\prime} \tag{19}
\end{equation*}
$$

with $\delta c \ll c$ and x_{2} close to $h(c)$. Then, proceeding exactly as in our previous works $[10,11]$ taking for D_{J} the straight edge and screw dislocation distributions (12) corresponding to an elastic - plastic planar crack π_{0} with a straight front parallel to x_{3} (Figure 1a), we obtain ($\bar{\sigma}_{i j} \equiv \bar{\sigma}_{i j}^{(I)}+\bar{\sigma}_{i j}^{(I I)}+\bar{\sigma}_{i j}^{(I I)}$ (6)):

$$
\begin{aligned}
\bar{\sigma}_{i i}^{(I)}\left(s, x_{2}, x_{3}\right) & =\frac{1}{\left(1+p^{2}\right)^{3}}\left(\left[\delta_{i 1}+\delta_{i 2}+2 v \delta_{i 3}+\left(-\delta_{i 1}+3 \delta_{i 2}+2 v \delta_{i 3}\right) p^{2}\right]\left(1+p^{2}\right)\right. \\
+ & \frac{1}{2}\left(x_{2}-h(c)\right)\left[\delta_{i 1}-\delta_{i 2}+2(1+v) \delta_{i 3}-6\left(\delta_{i 1}-\delta_{i 2}\right) p^{2}\right. \\
& \left.\left.-\left(-\delta_{i 1}+\delta_{i 2}+2(1+v) \delta_{i 3}\right) p^{4}\right] \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\left(c, x_{3}\right)\right)\left(1-p_{0} \frac{\sigma_{12}^{a}}{\sigma_{22}^{a}} \frac{K_{I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}},\right.
\end{aligned}
$$

$$
\bar{\sigma}_{12}^{(I)}\left(s, x_{2}, x_{3}\right)=\frac{p}{\left(1+p^{2}\right)^{3}}\left(1-p^{4}+\frac{1}{2}\left(x_{2}-h(c)\right)\right.
$$

$$
\left.\times\left[5-2 v-2(1+2 v) p^{2}+(1-2 v) p^{4}\right] \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right)\left(1-p_{0} \frac{\sigma_{12}^{a}}{\sigma_{22}^{a}}\right) \frac{K_{I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}},
$$

$$
\bar{\sigma}_{12}^{(I I)}=\frac{1}{\left(1+p^{2}\right)^{3}}\left(1-p^{4}+\frac{1}{2}\left(x_{2}-h(c)\right)\left[1+2(13+2 v) p^{2}+p^{4}\right] \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right)
$$

$$
\times\left(1+p_{0} \frac{v_{A} \sigma_{22}^{a}}{\sigma_{12}^{a}}\right) \frac{K_{I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}},
$$

$$
\begin{equation*}
\bar{\sigma}_{12}^{(I I I)}\left(s, x_{2}, x_{3}\right)=-\frac{p\left(2-v-v p^{2}\right)}{(1-v)\left(1+p^{2}\right)^{2}} \frac{\partial \xi}{\partial x_{3}} \frac{K_{I I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}} \tag{20}
\end{equation*}
$$

where subscripts i and j take the values (1,2 and 3) and (1 and 2) respectively; $p=\partial h(c) / \partial x_{1}, K_{J}^{0}(J=I, I I$ and III respectively) is given by (2). It is stressed again that s, x_{2} and x_{3} are arbitrary, $s=x_{1}-c \ll c(s>0)$ and $\left(x_{2}-h(c)\right)$ is

$$
\begin{aligned}
& \bar{\sigma}_{i i}^{(I I)}\left(s, x_{2}, x_{3}\right)=\frac{\left(-\delta_{i 1}+\delta_{i 2}-\delta_{i 3}\right) p}{\left(1+p^{2}\right)^{3}}\left(\left[3 \delta_{i 1}+\delta_{i 2}+2 v \delta_{i 3}+\left(\delta_{i 1}-\delta_{i 2}+2 v \delta_{i 3}\right) p^{2}\right]\left(1+p^{2}\right)\right. \\
& +\frac{1}{2}\left(x_{2}-h(c)\right)\left[3 \delta_{i 1}+(3+4 v) \delta_{i 2}+2(1+3 v) \delta_{i 3}+\left(-6 \delta_{i 1}-2(3-4 v) \delta_{i 2}+8 v \delta_{i 3}\right) p^{2}\right. \\
& \left.\left.+\left(-\delta_{i 1}-(1-4 v) \delta_{i 2}-2(1-v) \delta_{i 3}\right) p^{4}\right] \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\left(c, x_{3}\right)\right)\left(1+p_{0} \frac{v_{A} \sigma_{22}^{a}}{\sigma_{12}^{a}}\right) \frac{K_{I I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}}, \\
& \bar{\sigma}_{i i}^{(I I)}\left(s, x_{2}, x_{3}\right)=\frac{\left[\left(p^{2}-1\right) \delta_{i 1}+\left(1-2 v-(1+2 v) p^{2}\right) \delta_{i 2}-2\left(1+p^{2}\right) \delta_{i 3}\right]}{(1-v)\left(1+p^{2}\right)^{2}} \frac{\partial \xi}{\partial x_{3}} \frac{K_{I I I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}}, \\
& \bar{\sigma}_{j 3}^{(L)}\left(s, x_{2}, x_{3}\right)=\frac{p\left[-(2-v)+v p^{2}\right] \delta_{j 1}+\left[v-(2-v) p^{2}\right] \delta_{j 2}}{\left(1+p^{2}\right)^{2}} \frac{\partial \xi}{\partial x_{3}}\left(1-p_{0} \frac{\sigma_{12}^{a}}{\sigma_{22}^{a}}\right) \frac{K_{I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}}, \\
& \bar{\sigma}_{j 3}^{(I I)}\left(s, x_{2}, x_{3}\right)=-\frac{\left[1-(1-v) p^{2}-(2-v) p^{4}\right] \delta_{j 1}+p\left[1+2 v-(1-2 v) p^{2}\right] \delta_{j 2}}{\left(1+p^{2}\right)^{2}} \\
& \times \frac{\partial \xi}{\partial x_{3}}\left(1+p_{0} \frac{v_{A} \sigma_{22}^{a}}{\sigma_{12}^{a}}\right) \frac{K_{\|}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}}, \\
& \bar{\sigma}_{j 3}^{(I I I)}\left(s, x_{2}, x_{3}\right)=\frac{1}{(1-v)\left(1+p^{2}\right)^{2}}\left((1-v)\left[-p \delta_{j 1}+\delta_{j 2}\right]\left(1+p^{2}\right)-\frac{1}{2}\left(x_{2}-h(c)\right)\right. \\
& \left.\times\left[p\left(5-3 v-(1+v) p^{2}\right) \delta_{j 1}-\left(3-v-(3-v) p^{2}\right) \delta_{j 2}\right] \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right) \frac{K_{I I}^{0}}{\sqrt{2 \pi}} \frac{1}{\sqrt{s}}
\end{aligned}
$$

small. The parameter p_{0} in (20) originates from a planar crack π_{0} (Figure 1a) hypothetically assumed to approximate the average fracture surface $x_{2}=h\left(x_{1}\right)$. One observes that (20) and the relation (10) in [11] are identical. The crack extension force G (per unit length of the crack front) is calculated in the same way as for the isolated non-planar crack [10, 11]. We define a reduced crack extension force \tilde{G} as $\tilde{G}=G /\left(G_{0}^{I}+G_{0}^{I I}+G_{0}^{I I I}\right)$ with G_{0}^{J} given in (1) and obtain at $P_{0}\left(c, x_{2}=f, x_{3}\right)\left(\right.$ with $\left.M_{12} \equiv \sigma_{12}^{a} / \sigma_{22}^{a}, M_{13} \equiv \sigma_{23}^{a} / \sigma_{22}^{a}, M_{23} \equiv \sigma_{23}^{a} / \sigma_{12}^{a}\right)$

$$
\begin{equation*}
\tilde{G}\left(P_{0}\right)=\sum_{i, j=1}^{3} \tilde{G}_{j}^{(i)}\left(P_{0}\right) \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{G}_{1}^{(1)}=-\frac{1}{2\left(1+p^{2}\right)^{3}} \frac{\partial f\left(c, x_{3}\right) / \partial x_{1}}{\sqrt{1+\left(\partial f / \partial x_{1}\right)^{2}+\left(\partial f / \partial x_{3}\right)^{2}}}\left(2\left(1-p^{4}\right)\left(1-p_{0} M_{12}\right)-2 p\left(1+p^{2}\right)\right. \\
& \times\left(3+p^{2}\right)\left(p_{0} v_{A}+M_{12}\right)+\frac{2}{1-v}\left(p^{4}-1\right) M_{13} \frac{\partial \xi}{\partial x_{3}}+\left[\left(1-6 p^{2}+p^{4}\right)\left(1-p_{0} M_{12}\right)\right. \\
& \left.\left.\left.\left.-p\left(3-6 p^{2}-p^{4}\right)\right)\left(p_{0} v_{A}+M_{12}\right)\right] \xi \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right) \frac{(1-v)\left(p_{0} v_{A}+M_{12}\right)}{\left[1-v+(1-v) M_{12}^{2}+M_{13}^{2}\right.}\right], \\
& \tilde{G}_{2}^{(1)}=\frac{1}{2\left(1+p^{2}\right)^{3}} \frac{1}{\sqrt{1+\left(\partial f / \partial x_{1}\right)^{2}+\left(\partial f / \partial x_{3}\right)^{2}}}\left(2\left(1-p^{4}\right)\left[p\left(1-p_{0} M_{12}\right)+M_{12}+p_{0} v_{A}\right]\right. \\
& -\frac{2}{1-v} p\left(1+p^{2}\right)\left(2-v-v p^{2}\right) M_{13} \frac{\partial \xi}{\partial x_{3}}+\left[p\left(5-2 v-2(1+2 v) p^{2}+(1-2 v) p^{4}\right)\right. \\
& \left.\times\left(1-p_{0} M_{12}\right)+\left(1+2(13+2 v) p^{2}+p^{4}\right)\left(M_{12}+p_{0} v_{A}\right)\right] \\
& \left.\times \xi \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right) \frac{(1-v)\left(p_{0} v_{A}+M_{12}\right)}{\left[1-v+(1-v) M_{12}^{2}+M_{13}^{2}\right]}, \\
& \tilde{G}_{3}^{(1)}=-\frac{1}{\left(1+p^{2}\right)^{2}} \frac{\partial f / \partial x_{3}}{\sqrt{1+\left(\partial f / \partial x_{1}\right)^{2}+\left(\partial f / \partial x_{3}\right)^{2}}}\left(-p\left(1+p^{2}\right) M_{13}+\left[p\left(-2+v+v p^{2}\right)\right.\right. \\
& \left.\times\left(1-p_{0} M_{12}\right)-\left(1-(1-v) p^{2}-(2-v) p^{4}\right)\left(p_{0} v_{A}+M_{12}\right)\right] \frac{\partial \xi}{\partial x_{3}} \\
& \left.-p\left(5-3 v-(1+v) p^{2}\right) \frac{M_{13}}{2(1-v)} \xi \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right)\left[\frac{(1-v)\left(p_{0} v_{A}+M_{12}\right)}{\left[1-v+(1-v) M_{12}^{2}+M_{13}^{2}\right]},\right.
\end{aligned}
$$

P. N. B. ANONGBA

$$
\begin{align*}
& \tilde{G}_{1}^{(2)}=-\tilde{G}_{2}^{(1)} \frac{\partial f}{\partial x_{1}} \frac{1-p_{0} M_{12}}{p_{0} v_{A}+M_{12}}, \\
& \tilde{G}_{2}^{(2)}=\frac{1}{2\left(1+p^{2}\right)^{3}} \frac{1}{\sqrt{1+\left(\partial f / \partial x_{1}\right)^{2}+\left(\partial f / \partial x_{3}\right)^{2}}}\left(2 (1 + p ^ { 2 }) \left[\left(1+3 p^{2}\right)\left(1-p_{0} M_{12}\right)\right.\right. \\
& \left.+p\left(1-p^{2}\right)\left(M_{12}+p_{0} v_{A}\right)\right]+\frac{2}{1-v}\left(1+p^{2}\right)\left(1-2 v-(1+2 v) p^{2}\right) M_{13} \frac{\partial \xi}{\partial x_{3}} \\
& +\left[\left(-1+6 p^{2}-p^{4}\right)\left(1-p_{0} M_{12}\right)+p\left(3+4 v-2(3-4 v) p^{2}-(1-4 v) p^{4}\right)\left(M_{12}+p_{0} v_{A}\right)\right] \\
& \left.\times \xi \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right) \frac{(1-v)\left(1-p_{0} M_{12}\right)}{\left[1-v+(1-v) M_{12}^{2}+M_{13}^{2}\right.}, \\
& \tilde{G}_{3}^{(2)}=-\frac{1}{\left(1+p^{2}\right)^{2}} \frac{\partial f / \partial x_{3}}{\sqrt{1+\left(\partial f / \partial x_{1}\right)^{2}+\left(\partial f / \partial x_{3}\right)^{2}}}\left(\left(1+p^{2}\right) M_{13}+\left[\left(v-(2-v) p^{2}\right)\right.\right. \\
& \left.\times\left(1-p_{0} M_{12}\right)-p\left(1+2 v-(1-2 v) p^{2}\right)\left(M_{12}+p_{0} v_{A}\right)\right] \frac{\partial \xi}{\partial x_{3}}+\frac{(3-v)\left(1-p^{2}\right) M_{13}}{2(1-v)} \\
& \left.\times \xi \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right) \frac{(1-v)\left(1-p_{0} M_{12}\right)}{\left[1-v+(1-v) M_{12}^{2}+M_{13}^{2}\right]}, \\
& \tilde{G}_{1}^{(3)}=\tilde{G}_{3}^{(1)} \frac{\partial f / \partial x_{1}}{\partial f / \partial x_{3}} \frac{M_{13}}{(1-v)\left(p_{0} v_{A}+M_{12}\right)}, \\
& \tilde{G}_{2}^{(3)}=-\tilde{G}_{3}^{(2)} \frac{1}{\partial f / \partial x_{3}} \frac{M_{13}}{(1-v)\left(1-p_{0} M_{12}\right)}, \\
& \tilde{G}_{3}^{(3)}=-\frac{1}{2\left(1+p^{2}\right)^{3}} \frac{\partial f / \partial x_{3}}{\sqrt{1+\left(\partial f / \partial x_{1}\right)^{2}+\left(\partial f / \partial x_{3}\right)^{2}}}\left(4 v\left(1+p^{2}\right)^{2}\left[1-\left(p+p_{0}\right) M_{12}-p p_{0} v_{A}\right]\right. \\
& -\frac{4}{1-v}\left(1+p^{2}\right)^{2} M_{13} \frac{\partial \xi}{\partial x_{3}}+\left[2(1+v)\left(1-p^{4}\right)\left(1-p_{0} M_{12}\right)\right. \\
& \left.\left.-p\left(2(1+3 v)+8 v p^{2}-2(1-v) p^{4}\right)\left(M_{12}+p_{0} v_{A}\right)\right] \xi \frac{\partial^{2} \xi}{\partial x_{3}^{2}}\right) \frac{M_{13}}{\left[1-v+(1-v) M_{12}^{2}+M_{13}^{2}\right.} . \tag{22}
\end{align*}
$$

(22) is identical to the corresponding one for the isolated crack (see (16) in [11]). Expression (22) gives \tilde{G} for any arbitrary shape $f(3)$ of the crack front. Since fracture over large distance proceeds through the motion of a macroscopic length of the crack front, the relevant quantity is $\langle\tilde{G}\rangle$, the value of \tilde{G} averaged over the length of the crack front. $\langle\tilde{G}\rangle$ for several special isolated crack fronts have been provided: straight, sinusoidal, segmented [10-13]. All these results apply here i.e. when the crack front is associated with localized plastic yielding.

P. N. B. ANONGBA

The expected crack configuration after fracture propagation over large distance is the one that maximizes $\langle\tilde{G}\rangle$ under the Griffith condition $\langle G\rangle_{\max }=2 \gamma$ where γ is the surface energy.

IV - DISCUSSION

The reduced crack extension force $\tilde{G}(22)$ for the elastic - plastic crack is identical to that of the isolated crack given in [11]. Consequently the various graphical representations of $\langle\tilde{G}\rangle$ in [11], as a function of parameters (p, p_{0}, $p_{\mathrm{A}}, p_{\mathrm{B}} ; M_{12}, M_{13} ; v_{\mathrm{A}}$), for simple special isolated cracks are unchanged for the elastic-plastic cracks (see Figure 1 and 2, for example). From these works, non-planar crack configurations exist for which the crack extension force < G $>$ is larger than that of the planar crack in $O x_{1} x_{3}$, thus corroborating the occurrence of non-planar fracture abundantly observed in real materials. We shall add one more observation on the value of $\langle\tilde{G}\rangle$ on inverting the sign of the applied shears σ_{12}^{a} and σ_{23}^{a}. We first consider the planar crack π_{0} (Figure 1a) under mode $I+I I$ loading ($\sigma_{23}^{a}=0$). We have

$$
\begin{equation*}
\tilde{G}\left(P_{0}\right)=\frac{1+p_{0}^{2} v_{A}^{2}+\left(1+p_{0}^{2}\right) M_{12}^{2}-2\left(1-v_{A}\right) p_{0} M_{12}}{\sqrt{1+p_{0}^{2}}\left(1+M_{12}^{2}\right)} \quad\left(\xi=0 ; h=p_{0} x_{1}\right) \tag{23}
\end{equation*}
$$

Inverting the sign of σ_{12}^{a} from positive to negative (i.e. $M_{12}<0$) increases \tilde{G}. $M_{12}<0$ corresponds to applying the shear in the negative x_{1} - direction when the specimen is suffering tension $\left(\sigma_{22}^{a}>0\right)$ along x_{2}. If the specimen is under fatigue by inverting the sign of σ_{12}^{a} only, this asymmetry implies that this is the condition $G=2 \gamma\left(M_{12}>0\right)$ that controls the complete failure of the fracture material. A similar behaviour is found with σ_{23}^{a} for the non-planar crack with a segmented crack front (Figure 2a). We have in tension under mixed mode $I+I I I\left(\sigma_{12}^{a}=0\right)($ see also (20) in [11]) :

$$
\begin{align*}
& <\tilde{G}>\left(\sigma_{23}^{a}<0\right)-<\tilde{G}>\left(\sigma_{23}^{a}>0\right)=\frac{2 v v_{1}\left|M_{13}\right|\left(2+4 p_{0}^{2}+(2-v) p_{0}^{4}+(2-v) p_{0}^{6}\right)}{\left(1+p_{0}^{2}\right)^{2}\left(1-v+M_{13}^{2}\right)} \tag{24}\\
& v_{1}=\left(p_{A} p_{B} /\left(p_{A}+p_{B}\right)\right)\left(1 / \sqrt{1+p_{0}^{2}+p_{B}^{2}}-1 / \sqrt{1+p_{0}^{2}+p_{A}^{2}}\right)
\end{align*}
$$

$p_{A}=\tan \phi_{A}, p_{B}=\tan \phi_{B}\left(\right.$ see Figure $2 \boldsymbol{b}$ for ϕ_{A} and $\left.\phi_{B}\right)$. If $p_{A}=p_{B}, v_{1}=0$ and

P. N. B. ANONGBA

there is no asymmetry on inverting the sign of the shear σ_{23}^{a}. However if $p_{A} \neq$ $p_{B}, v_{1} \neq 0$ and an asymmetry does exist. The controlling $\langle\tilde{G}\rangle$ will be the smallest one depending on the values of p_{A} compared with p_{B}. Similarly, one may invert the sign of $\sigma_{22}^{a}(<0)$ and maintains the shearing stresses positive. Under such conditions (23) and (24) are unchanged; this leads to same asymmetries (note that σ_{22}^{a} replaces σ_{23}^{a} in the left hand side in (24)). One notes that Poisson's stress $\sigma_{11}^{a}=-v_{A} \sigma_{22}^{a}$ is tensile positive and opens the crack faces when p_{0} is different from zero.

V-CONCLUSION

Non-planar elastic-plastic cracks have been studied. These are of finite extension along x_{1} and x_{2} and infinite in the x_{3} - direction, inside an infinitely extended elastic medium, subjected to mixed mode $I+I I+I I I$ loading. The loadings, tension σ_{22}^{a} and shears σ_{12}^{a} and σ_{23}^{a}, are applied along the x_{2}, x_{1} and x_{3} directions at infinity, respectively. The front of the crack is planar in $x_{2} x_{3}$, has an average elevation $h=h\left(x_{1}\right)$ from $O x_{1} x_{3}$ and fluctuates weakly there in the form ξ (3). The plastic region is described by $x_{2}=h\left(x_{1}\right)$ with a straight front parallel to x_{3}. The crack and plastic zone are represented by a continuous distribution of three types J of infinitesimal dislocation with Burgers vectors directed along the applied loadings. Distribution functions D_{J} of straight dislocation arrays corresponding to an elastic-plastic crack π_{0} (Figure 1a), inclined by angle θ_{0} with respect to $O x_{1} x_{3}$ are calculated. Adopting these D_{J}, explicit expressions of the crack-tip stresses and crack extension force per unit length of the crack front, for the general crack front $f(3)$, are evaluated. Except for a difference in the value of the stress intensity factor, that now depends on the size of the elastic-plastic crack, these quantities agree with those of the isolated crack. Hence both types of crack can be treated in the equal manner.

P. N. B. ANONGBA

REFERENCES

[1] - D. S. DUGDALE, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8 (1960) 100-104
[2] - B. A. BILBY, A. H. COTTRELL and K. H. SWINDEN, The spread of plastic yield from a notch, Proceedings, Royal Society London, A272 (1963) 304-314
[3] - B. A. BILBY and K. H. SWINDEN, Representation of plasticity at notches by linear dislocation arrays, Proceedings, Royal Society London, A285 (1965) 22-33
[4] - S.-J. CHANG and S. M. OHR, Dislocation-free zone model of fracture, Journal of Applied Physics, 52 (1981) 7174-7181
[5] - S.-J. CHANG and S. M. OHR, Dislocation-free zone model of fracture, comparison with experiments, Journal of Applied Physics, 53 (1982) 5645-5651
[6] - S. M. OHR, An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture, Materials Science and Engineering, 72 (1985) 1-35
[7] - P. N. B. ANONGBA and V. VITEK, Significance of the deviations of the crack front into the plane perpendicular to the crack propagation direction : Crack-front dislocation generation, Int. J. Fract., 124 (2003) 1-15
[8] - J. SAMUELS and S. G. ROBERTS, The brittle-ductile transition in silicon. I. Experiments, Proceedings, Royal Society London, A421 (1989) 1-23
[9] - A. GEORGE and G. MICHOT, Dislocation loops at crack tips : nucleation and growth- an experimental study in silicon, Materials Science and Engineering, A164 (1993) 118-134
[10] - P. N. B. ANONGBA, Non-planar crack under general loading: dislocation, crack-tip stress and crack extension force, Rev. Ivoir. Sci. Technol., 16 (2010) 11-50
[11] - P. N. B. ANONGBA, Non-planar crack under general loading and induced normal stresses due to Poisson effect, Rev. Ivoir. Sci. Technol., 30 (2017) 37-57
[12] - P. N. B. ANONGBA, An analysis of a non-planar crack under mixed mode I+III loading using infinitesimal dislocations with edge and screw average characters, ResearchGate, DOI: 10.13140/RG.2.2.14308.60806
[13] - P. N. B. ANONGBA, A study of the mixed mode I+III loading of a nonplanar crack using infinitesimal dislocations, Rev. Ivoir. Sci. Technol., 14 (2009) 55-86

P. N. B. ANONGBA

[^0]: * Correspondance, e-mail : anongba@gmail.com

