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ABSTRACT 
 

Non-planar x2x3-plane-fronted cracks with arbitrary shapes, inside an infinitely 

extended isotropic elastic medium, whose finite lengths along the x1-direction 

increase at a constant velocity 2v, are the subject of the present study. The 

mixed mode I+II+III loading as well as traction-free crack face condition are 

assumed, with loadings 22

a , 21

a , 23

a  along x2, x1 and x3 directions 

(respectively). The crack front in the x2x3-plane located at spatial position x1 

has an average elevation h=h(x1) from Ox1x3 and fluctuates weakly there in the 

form 1 3( , )x x  . The crack is represented by a continuous distribution of 

three types J (J=I, II and III) of dislocation having the shape of the crack front. 

Their Burgers vectors bJ are directed along the applied tension and shears, 
respectively. Explicit expressions of the dislocation elastic fields (displacement and 

stress) are first given. Then distribution functions DJ of straight dislocations, 

corresponding to a planar crack 0  tilted (around Ox3) by angle 0  from Ox1x3, are 

given. Adopting these DJ, we propose explicit expressions of the crack-tip stresses and 

crack extension force G per unit length of the crack front. The analysis is subsequently 

applied to a simple special non-planar crack having a crack-front composed by two 

types (A and B) of straight segments inclined by angles A  and B  from the x3-

direction; the average fracture surface is plane 0 . Expressions < G > of G averaged 

over the length of the oscillatory crack-front are displayed. Two types of segmentation 

under dominant mode I loading are shown: (i) Strong segmentation ( A = B =70°). 

At 0 = 54°, < G > as a function of v displays a maximum <G>max larger than G0, the 

corresponding value of the crack extension force when the moving crack is planar in 

Ox1x3. This indicates that a steady motion along x1 of this non-planar crack 

configuration may occur under load in dynamic fracture experiments. (ii)                         
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Flat fracture surface with isolated segmentations ( A = 0.1°, B = 88°).                

At 0 = 35°, < G > (v) displays a maximum larger than G0 indicating again that 

this configuration can propagate steadily. These configurations explain crack 

branching observed in brittle materials.  
 

Keywords : fracture mechanics, linear elasticity, crack propagation and 

arrest, dislocations, crack extension force. 

 

 

RÉSUMÉ 
 

Fissure non plane en mouvement uniforme sous sollicitation 

extérieure arbitraire  
 

Des fissures, ayant une forme non plane arbitraire avec un front plan parallèle 

à x2x3 dont les longueurs suivant la direction x1 augmentent à vitesse constante 

2v, font l’objet de la présente étude ; le milieu de propagation est isotrope, 

élastique et infiniment étendu. Le mode de sollicitation est mixte I+II+III avec 

des contraintes 22

a , 21

a , 23

a  appliquées le long des directions x2, x1 and x3 

(respectivement). On applique la condition que les forces sur les faces de la 

fissure sont nulles. Le front de fissure dans le plan x2x3 situé en x1 a une côte 

moyenne h= h(x1) par rapport à Ox1x3 et ondule faiblement sous la forme ξ= ξ 

(x1, x3) à cette hauteur. La fissure est représentée par une distribution continue 

de trois types J (J=I, II et III) de dislocation ayant la forme du front de fissure. 

Leur vecteur de Burgers bJ sont dirigés le long de la tension et des cisaillements 

appliqués, respectivement. Des expressions explicites des champs élastiques 

(déplacement et contrainte) des dislocations sont d’abord calculées. Ensuite, 

des fonctions de distribution DJ de dislocations droites, correspondant à une 

fissure plane 0  tiltée (autour de Ox3) d’un angle 0  à partir de Ox1x3 sont 

données. En adoptant ces DJ, nous proposons des expressions explicites des 

contraintes en tête de fissure et de la force d’extension G de la fissure par unité 

de longueur du front de fissure. L’analyse est par la suite appliquée à une forme 

spéciale de fissure non plane ayant un front constitué de deux types (A et B) de 

segment droit inclinés des angles A  and B  par rapport à la direction x3 ; la 

surface de rupture moyenne est le plan 0 . Des expressions < G > de G 

moyennée sur la longueur du front oscillant de la fissure sont données. Deux 

types de segmentation, sous un mode I de sollicitation en tension dominant, 

sont exhibés : (i) Forte segmentation ( A = B =70°). Pour 0 = 54°, < G > en 

fonction de v présente un maximum < G >max plus élevé que G0, la valeur 

correspondante de la force d’extension de la fissure plane voyageant dans le 

plan Ox1x3. Ceci indique qu’un mouvement stationnaire de cette configuration 
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de fissure non plane peut se développer sous charge dans des essais de fracture. 

(ii) Surface de fracture plate avec des segmentations isolées ( A = 0.1°, B = 88°). 

Pour 0 = 35°, < G >(v) exhibe un maximum plus grand que G0 indiquant de 

nouveau que cette deuxième configuration de fissure peut se propager à vitesse 

stationnaire sous tension dominant. Ces configurations de fissure expliquent 

bien la ramification des fissures observée dans des matériaux fragiles.  
 

Mots-clés : mécanique de la rupture, élasticité linéaire, propagation et arrêt 

de fissure, dislocation, force d’extension de fissure. 

 

 

I - INTRODUCTION 
 

This work is a first attempt to analyse non-planar cracks in motion in an elastic 
medium by using explicit expressions of the elastic fields (displacement and stress) 

of moving crack dislocations. In previous studies [1 - 7], non-planar cracks are 

static with their planar front developed in a Fourier series. They are described 

by a continuous superposition of sinusoidal dislocations. We shall provide a 

generalization of this modelling by allowing the crack front plane to move 

uniformly at a velocity v in the subsonic velocity regime (v < ct, the velocity 

of transverse sound waves). We consider an isotropic, elastic and infinitely 

extended medium to which we attach a Cartesian system xi. It consists of a non-

planar crack of finite extensions along x1 and x2 and infinite in the x3- direction. 

Initially the crack is static and extends along x1 from x1= -a to a. It spreads at 

any x1- spatial position in the x2x3- plane in the form of a Fourier series  
 

  )(),()(cossin 131133 xhxxxhxxf nnnn

n

                               (1) 

 

Here n is a positive integer; h, n , n  and n  are real that are 1x dependent. 

The static case has been treated in [5, 6]. Figure 1 gives an illustration of the 

crack front. At a given time taken as t= 0 and under general loading, it starts 

moving at constant velocity v in the x1- direction. Its extension after 

incremental time t is given by 
1x c a vt   . In addition to moving uniformly 

along x1, we demand that the crack faces be free from any traction. The loadings 

correspond to mixed mode I+II+III with tension 22

a and shears 21

a and 23

a  

applied at infinity. The treatment also includes normal induced stresses 11

a =

33

a = 22

a  originating from the Poisson’s effect. The crack is represented by 

a continuous distribution of three types of infinitesimal moving dislocations J 

(J=I, II and III) having the shape f (1) with Burgers vectors (0, ,0)Ib b , 
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( ,0,0)IIb b  and (0,0, )IIIb b ,respectively. Types I and II are of edge 

character on average and type III screw.  

  

 
 

Figure 1 : Illustration of the crack front that lies in x2x3 in the form f (1). 

Mixed mode I+II+III loading is assumed with loadings 22

a , 21

a , 

23

a  along x2, x1 and x3 directions (respectively) 

 

Dislocation distributions DJ (J= I , II and III) are defined such that ' '

1 1( )JD x dx  

represents the number of dislocations J in the infinitesimal
1x  interval '

1dx  

located about the 
1x  spatial position '

1x . The elastic fields (displacement 
( )Ju

and stress ( )( ) J ) of the dislocation J located at '

1 1x x vt  in the medium may 

be deduced from those (moving sinusoidal dislocations) located at '

1 1x x  with 

simple form 
3sinn n nA x  in x2x3-planes (Figure 2). For the later, the elastic 

fields at 
1 2 3( , , )x x x x  are (to linear term in amplitude 

n )  

 

     ( )( )( ) ( )(0)

1 2 1 2 3( ) ( , ) ( , , )nJ AJ n Ju x u y x u y x x  , 

      ( )( )( ) ( )(0)

1 2 1 2 3( ) ( ) ( ) ( , ) ( ) ( , , )nJ AJ n Jx y x y x x                                            (2) 

 
'

1 1 1y x x  ; 
( )(0)Ju and ( )(0)( ) J  are of zero order, they correspond to the fields 

of a moving straight dislocation J (parallel to x3) at '

1 1x x  on Ox1x3 with 

Burgers vector Jb ; 
( ) nJ A

u and ( )
( ) nJ A  are oscillating parts involving An or its 

spatial x3 -derivative 
3/nA x  .  
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Figure 2 : Infinitely long sinusoidal dislocation travelling uniformly at 

constant speed v in the x1- direction with Burgers vector Jb directed 

along x1(J=II), x2 (J=I) and x3 (J= III); the dislocation at the origin 

(t=0) and after incremental time t are illustrated 

 

When the dislocation exhibits shape f (1), the elastic fields take the form  

 

     
( )( ) ( )(0) ( )(0) ( )

1 2 1 2 3( ) ( , ) ( , , )nJ AJ J J J

n

u x u y y u y y x u u     , 

 
( )( ) ( )(0) ( )(0) ( )

1 2 1 2 3( ) ( ) ( ) ( , ) ( ) ( , , ) ( ) ( )nJ AJ J J J

n

x y y y y x                    (3) 

 

2 2y x h  ; here An stands for 
3 3sin cosn n n n nA x x     . In Section 2 

(Methodology), the procedure for determining the dislocation J elastic fields 

and crack analysis are presented. In Section 3 are listed expressions of the 

dislocation elastic fields, distribution functions of crack dislocations, crack-tip 

stresses and crack extension force. A numerical application is given with a 

special non-planar crack in Section 4. Sections 5 and 6 are devoted to the 

discussion and conclusion, respectively.  

 

 

II - METHODOLOGY 
 

II-1. Elastic fields of uniformly moving crack dislocations 
 

The three types J (J=I, II and III) of crack dislocation considered have Burgers 

vectors (0, ,0)Ib b , ( ,0,0)IIb b  and (0,0, )IIIb b  ; they spread in the x2x3- 

plane located at '

1 1x x vt  in the form of a Fourier series f (1). We shall make 
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use of the displacement ( , )mu x t , m=1, 2 and 3, (see (5) below) due to a plastic 

distortion ( , )ij x t  given as a periodic function of coordinates and time 

 
( . )( , ) i t k x

ij ij k e                                                                                                   (4) 

 

where 
1 2 3( , , )k k k k  and ω are arbitrary constants. Mura [8, 9] has shown the 

associated displacement component to be  

 
( . )( , ) i t k x

m l klji mk iju x t ik C L e                                                                            (5) 

 

For isotropic material,  

 

 
  

2 2

2 2 2 2

( 2 ) ( )
( , )

( 2 )

km k m

mk

k k k
L k

k k

     


    

   


  
                                                (6) 

 

where 2 2 2 2

1 2 3k k k k    and  

 

klji kl ji kj li ki ljC         ,                                                                       (7) 

 

ij  being the Kronecker delta and λ and µ are Lamé’s constants. The plastic 

distortions ( ) ( , )J

ij x t  associated to the dislocations J (J= I , II and III), are 

expressed successively to first order in ξ, assuming ξ in (1) small. 

 
( )

12 1 2 1 2( , ) ( ) ( ) ( ) ( )I x t b y H y b y y                                                              (8) 

 

the other components of the plastic distortion are zero; δ and H are the Dirac 

delta and Heaviside step functions, respectively; 
1 1y x vt   and

2 2y x h   . 

Here, the first term is due to a straight edge dislocation displaced by x2= h from 

the Ox1x3- plane. The corresponding displacement can be derived by replacing 

x2 by (x2 – h) in the displacement of a straight edge I dislocation at '

1 1x x vt 

(travelling in the Ox1x3- plane at velocity v in the x1- direction; in the present 

geometry, see [10]). We shall therefore concentrate on the second term denoted 
( )

12

I   . Its Fourier form is taken from [5]: 

 

 ( '. ) ( . )( )

12 1 228
h hi t k x i t k xI

n n

n

b
z e z e dk dk

 


 

 

 

                                         (9) 
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' ' ' '

1 1 2 2 3( , , )nk k k k k k      , 
1 2 3( , , )nk k k k   , 

1 2 3( , , )hx x y x ; 

n n nz i   , 
n n nz i   , 

1k v   . 

 
( )

12

I   (9) is a superposition of wave expressions of the form (4). Therefore, 

associated displacement ( ) ( , )I

mu x t is a similar superposition of the 

displacement (5) : 

 

 ( '. )( ) ' '

212
( , )

8
hi t k xI

m l kl mk n

n

b
u ik C L k z e

 


 



 

     

                                     ( . )

21 1 2( , ) hi t k x

l kl mk nik C L k z e dk dk
 

                          (10) 

 

We now consider the dislocation J= II with form (1) at '

1 1x x vt  . For 

convenience, we follow the presentation in [5]. The elastic fields due to this 

dislocation can be derived from those of a sinusoidal dislocation located at 
'

1 1x x  with the same Burgers vector, lying in the x2x3- plane and defined by

2 3sinn n nx A x    (see Figure 2 for illustration). There are two non-zero 

components of the plastic distortion:  

 

( )( )

21 2 12

3

( ) ( )
1 ( / )

II n

n

n

b
x A H y

A x
    

  
, 

( )( ) ( )( )

31 3 21/II n II n

nA x                                                                                  (11) 

 

We assume that both An and 
3/nA x  are small in magnitude: corresponding 

Fourier forms used in the sequel are  

 
( )( )( ) ( )(0)

21 21 21
nII AII n II       

1 1 2 2( )( )(0)

21 1 22

1

1

(2 )

i t k x k xII ib
e dk dk

k




 

 

 

   , 

 
'( ) ( . ) ( . )2

21 1 22

18
nII A i t k x i t k xnib k

e e dk dk
k

 




 

  

 

                                               (12) 

 
'( )( ) ( . ) ( . )

31 1 22

1

1

8

II n i t k x i t k xn nib
e e dk dk

k

  




 

  

 

                                        (13) 

 
( )(0)

21

II   corresponds to a straight edge dislocation located at '

1 1x x  in Ox1x3; 
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the corresponding elastic fields in the present study are known [10]. In these 

fields, we just replace x2 by (x2-h) to obtain the elastic fields of the straight 

dislocation at '

1 1x x  displaced by x2= h from the Ox1x3-plane. This gives the 

non-oscillating part of the elastic fields of crack dislocations II with form f (1).  

With two non-zero components ( )

21

II   and ( )

31

II   , their oscillating parts for the 

displacement read : 

 

 *( )( ) ' ' '

1 2 2 1 21( ) ( , )nII AII

m m m

n

u i k L k L k   

 

 

     

   
'( . ) *( )' ' *( )( ) '

1 3 1 31 1 2 2 1 21( ) ( , ) ( ) ( , )h ni t k x II AII n

m n m m mk L L k e k L k L k
         

 

              ( . )*( )( )

1 3 1 31 1 2( ) ( , ) hi t k xII n

m n mk L L k e dk dk
     

                              (14) 

 

( ) ( )' 2
21 21 2

1

( , ) ( , )
8

n nII A II A nib k
k k

k


   



 
   , 

 

( )( ) ' ( )( )

31 31 2

1

( , ) ( , )
8

II n II n n nib
k k

k

 
   



                                                         (15) 

 
' '( , )mk mkL L k  ,   ( , )mk mkL L k  . 

 

For the average screw dislocation III with form f (1) at 
'

1 1x x , the non-zero 

component of the plastic distortion used previously [5] is written to first order in ξ : 

 
( )

13 1 2 1 2( , ) ( ) ( ) ( ) ( )III x t b y H y b y y                                                               (16) 

 

Here, the first term ( )(0)

13

III   is due to a straight screw at '

1 1x x  with elevation 

x2= h from Ox1x3. Its Fourier form reads 

 

1 1 2 2( )( )(0) ( )(0)

13 13 1 2

i t k x k yIII III e dk dk 

 

  

 

                                                          (17) 

( )(0)

13 2

24

III ib

k




   .  

 

Using the displacement (5) associated with a single wave plastic distortion, we 

obtain  
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 1 1 2 2( )( )(0) *( )(0)

31 13 1 2

i t k x k x hIII III

m l kl mku ik C L e dk dk




 

  

 

                                      (18) 

 

Because ( )

13

III  (16) and ( )

12

I  (8) are identical in form, we can make use of the 

Fourier form (9) for the second term ( )

13

III    in (16). Using (5), we obtain the 

associated displacement ( ) ( , )III

mu x t  to be 

 

*( ) ( '. )( ) ' '

13 31
n hIII A i t k xIII

m l kl mk

n

u ik C L e
 

 



 

    

                               ( . )

31 1 2( , ) hi t k x

l kl mkik C L k e dk dk
 

                                    (19) 

( )

13 28
nIII A nib





  . 

 

At this stage, we can write down the various displacements ( )Ju (J= I, II and III) 

associated with the three types J of crack dislocation with form f (1). The stress 

fields ( )( ) J can be obtained by differentiating the displacements. Our 

calculation results are displayed in Section 3. 

 

II-2. Crack analysis  
 

The crack system (Figure 1) has been described earlier in Section 1. The 

requirements are that (i) the front (x2x3- plane) of the crack moves at constant 

velocity v along the x1- direction and (ii) the crack faces remain free from any 

traction. The latter condition reads  
 















0//

0//

0//

33313123

23312122

13311112







xfxf

xfxf

xfxf

                                                                     (20) 

 

ij  stands for the total stress at any point P ),,( 321 xxx  in the medium and is 

linked to JD . In (20), we are concerned with the positions on the crack faces 

only. We write ij  as 

 
( )( ) ( )( ) ( )( )A C I C II C III

ij ij ij ij ij                                                                                     (21) 

 

( )A  is the externally applied stress including normal induced stresses from 

Poisson effect,   
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22 12

12 22 23

23 22

0

( )

0

a a

A

A a a a

a a

A

  

   

  

 
 

  
  

                                                                     (22) 

 

( )( ) ( ) ' ' '

1 2 3 1 1 2 3 1 1( , , ) ( , , ) ( )
c

C J J

ij ij J

c

x x x x x x x D x dx 


    (J=I, II and III)               (23) 

 
( )J

ij  is the stress due to the crack dislocation J located at '

1 1x x  in the 

distribution. (20) gives three integral equations the resolution of which yields 

the DJ. The relative displacements ϕJ of the faces of the crack in the x1-direction 

(J=II), x2- direction (J=I) and x3- direction (J=III) are obtained by integration 

from the relation ' '

1 1( )J Jd bD x dx   : 

 

1

' '

1 1 1( ) ( )

c

J J

x

x bD x dx   , 
1x c                                                                         (24) 

 

From (21) to (23), one can obtain the crack-tip stresses. The crack extension 

force G per unit length of the crack front is defined in previous works (see [5, 

6, 10, 11], for example). Figure 3 is a schematic representation of simple 

special cracks captured by the modelling. The cracks extend in the                    

1x direction from 1x c   to c and must be considered to run indefinitely in 

the 3x direction. The crack shape in planes perpendicular to 1x  is described 

by  (Figure 3c for example). The shape f  of the crack in planes 

perpendicular to 3x  is given by both  , through the 1x dependence of 

positive quantities n , n  and n  (1), and function )( 1xhh  . Since   is 

assumed to be small oscillating function, the average fracture plane is described 

correctly by the equation )( 12 xhx  . When 0 , the crack dislocations are 

straight parallel to 3x  and distributed over the surface )( 12 xhx  . Specific 

examples are (Figure 3) :  

 101)( xpxh   ( 00 p ) and 0 . This corresponds to a planar crack 0

(with a straight front parallel to 3x ) rotated around 3Ox  by angle 

0

1

0 tan p  from 31xOx , Figure 3a.  

 )( 1xh  is an arbitrary function of 1x , 0 . The sketch in Figure 3b 

corresponds to h  odd although this is not mandatory. Actually h odd 
conforms well to homogeneity of the medium, geometry of the applied 

loadings and JD  (Section 3) approximations adopted in the present study. 
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 101)( xpxh   ( 00 p ) and )( 3x   independent of 1x . The crack 

fluctuates about plane 0 with a front spreading in planes parallel to 

32xx  in the form  . In the example displayed in Figure 3c the crack 

consists of planar facets with inclination angles A  and B  (Figure 3d) at 

points A and B of the crack front located on the average fracture plane.  
 

 
 

Figure 3 : Simple special cracks. (a) Inclined planar crack 0 (see text). (b) A 

non-planar crack (parallel to 3x ) as h odd function of 1x  ( )( 12 xhx  ). 

(c) Non-planar crack fluctuating about an average inclined plane 0 . 

The crack consists of planar facets; its fronts at 1x c   lie in 32xx

planes. At 1x c , the crack front is characterized by inclination angles 

A  and B  (see (d)) at points A and B located on the average fracture 

plane. (d) Sketch of the crack front in (c) with B taken as origin. In 

this geometry (from (a) to (c)) the general loading of the crack 

systems corresponds to uniform applied
a

22 ,
a

12  and a

23  at infinity in 

the 2x , 1x  and 3x  directions, respectively 
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III - RESULTS 
 

III-1. Elastic fields of crack dislocation I  
 

We consider a dislocation I with Burgers vector (0, ,0)Ib b lying indefinitely 

in the x3- direction and spreading in the x2x3- plane at '

1 1x x vt  in the Fourier series 

form f (1). The elastic fields take form (3). We get at spatial position (x1, x2, x3) : 
 

2 2
( )(0) 1 12 21 1

1 22 2

2 2

1
ln ln tan tanI t t

m m l t m

t l t l t t

P Py yb
u r r

v P P P y P P y
 



 
    

        
    

       (25) 

 
2 2 2

( )(0) * 2
11 12 2 2

2 (1 2 ) 2I t t

t l l t t

c v Pb
y

v Pr Pr






  
  

 
, 

2
( )(0) 2
22 12 2 2

2 1 1I t

t t t l l

bP
y

v Pr Pr






 
  

 
, 

2
( )(0) * 1
33 2

(1 2 )I

l l

b c y

P r







 , 

4
( )(0) 2
21 22 2 2

2I l t

t l t t

P Pb
y

v r Pr






 
  

 
                                                                             (26) 

 

/t tv v c , 2 21t tP v  , 2 2

2 1 / 2t tP v  ; 

/l lv v c , 2 21l lP v  ;    2 2 2 2

1 2s sr y P y  ,    s=t and l;   
* /t lc c c ; 

 

the subscript m takes the values 1 and 2, and ct and cl are the velocities of 

transverse and longitudinal sound waves, respectively. Other elastic field 

components are zero. The oscillating parts of the elastic fields take the forms: 

 
2 2

( ) ( ) ( )2 *
1 0 02

2

2(1 )
[ ] [ ]

(1 2 )

I t lt
n n n

n
t t l

P cb
u A K z K z

v x P P

 

 

 
    

  
, 

2 22
( ) ( ) ( ) ( )*
2 02 2

1 2

2(1 )1
[ ] 2

2 (1 2 )

I t t lt
n n

n
t t t l

v cb
u A K z I I

v P y x P P

 

 

   
          

, 

2 2
( ) ( ) ( )* *
3 2

3 2

(1 ) (1 2 ) 2(1 )I t ln

n
t t l

Ab c c
u I I

v x x P P

  



   
   

   
                             (27) 
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( ) ( )

( ) 1 2
1 2 3 2 1 3

1 2

2
(1 ) ( ) (1 ) ( )

1 2

I I
I

ii i i i i i i

u u

x x

 
 

          


  
       

  
 

       
( )

3
3 1 2

3

(1 ) ( )
I

i i i

u

x



    


    
 

, i=1, 2 and 3,  

( )( )
( )

II
jI i

ij

j i

uu

x x


 

 
     

,   i j                                                                  (28) 

 

( ) 2 2 2

1 2( / )s

n n s sz P y P y  ,   

1

( ) '( )

0[ ]s s

n

y

I K z dy



  , s= t and l; 

Kn[z] is the nth- order modified Bessel function usually so denoted and '( )s

nz  

stands for ( )s

nz with y instead of y1.  

 

III-2. Elastic fields of crack dislocation II 
 

The dislocation II has Burgers vector ( ,0,0)IIb b  and spreads in the x2x3- 

plane at '

1 1x x vt  in the Fourier series form f (1). The elastic fields have form 

(3). We obtain: 

 
2

( )(0) 2 1 12 1 1
2 1 22

2 2

ln ln tan tanII t
m m l l t m t

t t t l

P y yb
u P r r P

v P P y P y
 



 
    

        
    

        (29) 

 
2 2 2 2

( )(0) 2 * *
11 22 2 2

2 [( 2) ]II t t l l

t t l

PP P c P cb
y

v r r






   
  

 
, 

2 2 2 2
( )(0) * * 2
22 22 2 2

[ 2] 2II l l t t

t l t

P P c c PPb
y

v r r






   
  

 
, 

2
( )(0) * 2
33 2

(1 2 )II l

l

b c P y

r







  , 

4
( )(0) 2
21 12 2 2

2II l t

t l t t

P Pb
y

v r Pr






 
  

 
                                                                           (30) 

 

Other elastic fields of zero order with respect to An are zero. The oscillating 

parts of the displacement are : 
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2 2 ( )
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4(1 )(1 ) [ ]

2

t
II ln t n

l n
n
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A c v K zb
u c PK z
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                         2 2

* * 2 1(1 2 )(2 ) 2(1 )(2 1) ( )c c y y    
      
  

              (31) 

 

The associated stress fields are obtained by differentiating the displacements 

with similar relations as in (28).  

 

III-3. Elastic fields of crack dislocation III 
 

The dislocation III has Burgers vector (0,0, )IIIb b  and spreads in the x2x3- 

plane at '

1 1x x vt  in the Fourier series form f (1). The elastic fields have form 

(3). For the non-oscillating part of the displacement, the only non-zero 

component is 
 

( )(0) 1 2
3 2

13( ) 1

tan
2

III t

t

P yb
u

y

                                                                              (32) 

 
2

13( )t  stands for 2

tP . Surprisingly 
2

13( ) 1t   when the displacement ( )(0)

3

IIIu is 

derived from the plastic distortion *

23( , )x t for which it is assumed that a slip 

b = (0,0,b) is produced in the x1x3- plane for x1 < vt [8, 12]. Hence, it is 

questioned to see the effect of this difference in both values of ( )(0)

3

IIIu . We 

observe no change in the reduced crack extension force (see Figure 6 in 

Section 4) for a special non-planar crack with a segmented front. 
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( )(0) 2
13 2 2

13( )2

III t

t t

bP y

r





  ,   

( )(0) 1
23 2 2

13( )2

III t

t t

bP y

r





                                                 (33) 

 

The compressive ( )(0)III

ii (i=1, 2 and 3) stresses are zero, as also ( )(0)

21

III . The 

oscillating parts of the displacement read: 

 
2 2 2

( ) ( ) ( )* *
1 0 02

3

2( 1)(1 2 ) 4(1 )(1 )
[ ] [ ]

2

III t ln t
n n

n
t t l

A v c cb
u K z K z

v x P P

  



      
   

  
, 

2 2
( ) ( ) ( )* *
2 2

3 2

( 1) 2(1 )1 2III t ln

n
t t l

Ab c c
u I I

v x x P P

 



    
   

   
                                   (34) 

 
2 ( ) 2( )

( ) 2 2 ( )0 *
3 *2

1

[ ] 2(1 )(1 2 )
2 ( 1)

2

t t
III lt n

n n
n

t t t l

v K z cb I
u A c I

v P y P P

 





   

          
. 

 

The associated stress fields ( )( ) J  are obtained by differentiating the 

displacements.  

 

III-4. Crack dislocation distributions 
 

Assume first that the dislocations are straight parallel to the 3x direction

)0(  and 101)( xpxh   depends linearly on 1x  with 0p  positive constant 

(Figure 3a). We thus have a planar crack of finite extension, with straight 

fronts running indefinitely along 3x , rotated (from 31xOx ) about the positive 

3x direction by 
0

1

0 tan p . The crack extends from 1x c   to c and is 

subjected to mixed mode I+II+III with loadings applied at infinity. Under such 

conditions, we have 011 // pxhxf  , 0// 33  xxf  ; making use of 

the traction -free crack face condition (20) and stresses from moving straight 

dislocations J, the dislocation distributions DJ are obtained in the form 

 
( )

1 0 1( ) ( )J

J JD x d D x ,      J= I, II and III                                                          (35) 

 
( )

0

JD  corresponds to the equilibrium distribution of straight dislocations J when 

the crack is planar in the Ox1x3- plane (p0= 0), extending from x1= -c to c, under 

pure mode J loading (see [10] for J=I and II). The calculation results are listed 

( 12 21 22/a aM   ) : 
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13( )2

III t

t
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 ,     

2 2

0

2

0

1

1

t
III

p P
d
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             (36) 

 

The corresponding relative displacements J  of the faces of the crack, in the 

x2 (J=I), x1 (J = II) and x3 (J = III) directions, are  
 

( )

1 0 1( ) ( )J

J Jx d x                                                                                            (37) 

 
( )

0

J  corresponds to the relative displacement of the crack faces when the crack 

is in Ox1x3- plane under pure mode J loading. They are given by [10] for J=I 

and II. We have  
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( ) 2 22322 21
0 1 1( ) ( ) ( )

0 0 0

( )
aa a

J

JI JII JIIII II III

b
x c x

C C C

 
   



 
    

 
,   J=I, II and III         (38) 

 

DJ is unbounded at x1= ±c and the corresponding J  vertical at these end 

points. In its general form (20) requires a numerical resolution. We shall 

progress further by providing approximate expressions for the stress about the 
crack front and crack extension force with f given by (1) using DJ (35) when the 

average fracture surface h=h(x1) can be approximated by plane π0 of Figure 3a.  
 

III-5. Stresses about the crack-tip  
 

We consider P ),,( 321 xxx  about the crack front located at 1x c ; hence 2x  is 

close to h  since the fracture surface is given by  hf  with   small. 

Writing 1x c s   ( 0 s c  ), from (21) the stress at P is identified to the 

following formula: 
 

( ) ( ) ' ' '

2 3 1 2 3 1 1( , , ) ( , , ) ( )
III c

C J

ij ij J

c cJ I

s x x c s x x x D x dx


 


   ,        c c                (39) 

 

This stress expression means that only those dislocations located about the 

crack front in 1x interval [ , ]c c c will contribute significantly to the stress at 

1x c s   ahead of the crack tip as s tends to zero ; any other contribution will be 

negligible for a sufficiently small value of s. We observe that this formula is 

precise with no place for any other kind of additional stress term. Because x2 is 

close to h, we can consider the Taylor series expansion of 
( ) '

1 1 2 3( , , )J

ij x x x x   in 

(39) about )( 12 xhx   to first order with respect to )( 2 hx  ; this gives  

 
( )

( ) ' ( ) '

1 1 2 3 1 1 3 2 2

2

( , , ) ( , , ) ( ) ( )

J

ijJ J

ij ijx x x x x x h x x h o x h
x


 


      


               (40) 

 

where )( 2 hxo   is the complementary part of the series. Applying the Taylor 

expansion (40), in 
( ) '

1 1 1 3( , ( ), )J

ij x x h x x   and 
( )

2/J

ij x  (in which 1x c s  ), 

appears the difference ( )()( '

11 xhxh  ) which we express as follows since 1x  

and '

1x  (see (39)) are close to c  : 1 1 1( ) ( ) ( ) ( )h x h c p x c o x c      and  
' ' '

1 1 1( ) ( ) ( ) ( )h x h c p x c o x c      where 1( ) /p h c x   ; therefore 

)()()()( '

11

'

11

'

11 xxoxxpxhxh  . Furthermore in 
( )C

ij (39) we restrict 
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ourselves to singularities of the type 2/1s only; this is the singularity that comes 

into play in the study of planar cracks and gives a well-defined value to the 

crack extension force. This corresponds to identify 
( )J

ij  to the unbounded 

terms with 11/ ( ')c s x   in the Taylor expansion (40). Assuming ),( 31 xx  and 

its spatial derivatives with respect to 
3x  be bounded at 1x c , the involved 

integrals in (39) are of the type 
1 1 1( ') / ( ') 'JD x c s x dx   which is calculated 

approximately taking for 
JD  the straight edge and screw dislocation 

distributions (35) corresponding to a planar crack 0  with a straight front 

parallel to 
3x  (Figure 3a). We obtain (

( ) ( )( ) ( )( ) ( )( )C C I C II C III

ij ij ij ij      ): 

 

( )(0) ( ) (0)
( )( ) ( )(0) ( )

2 ( )
2 2 0

( ( ))
2

J J

ij ijC J J J J J
ij ij ij J

d K
x h c

x x C s




 

  


    
           

            (41) 

 

 (0)

22 21 23

a a a

J JI JII JIIIK c         . 

 

In (41), x2 is close to h(c), this means that (x2-h) remains small; the various 

quantities associated with stresses are given in the Appendix.  

 

III-6. Crack extension force  
 

The crack extension force G per unit length of the crack front is calculated in 

the same way as in [5]. We defined a reduced crack extension force G  as   
 

 ( ) ( ) ( )

0 0 0/ I II IIIG G G G G   ;         

2(0)
( )

0 ( )

04

J J

J

bK
G

C
                                        (42) 

 
( )

0

JG  is the crack extension force per unit edge length for planar straight-fronted 

cracks in Ox1x3, extending steadily from x1= -c to c, under pure mode J loading. 

We obtain the reduced crack extension force at Pc (x1= c, x2= f, x3) as (with 

12 12 22/a aM   , 13 23 22/a aM   , 23 23 21/a aM   ) 

 
3

( )

, 1

( ) ( )i

c j c

i j

G P G P


                                                                                              (43) 
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( ) ( ) 2 ( ) ( ) 2

123 0 0 12 0 0 131 ( / ) ( / )I II I IIIC C M C C M    . 

 

Here, quantities associated with stresses are given in the Appendix. In Section 

4, we give a more detailed description of G for a special plane-fronted non-

planar crack with a segmented front (Figure 3c).  

 

 

IV - SPECIAL RESULT : PARTICULAR NON-PLANAR CRACK WITH  
 

A SEGMENTED FRONT 
 

The example we shall describe is given in Figure 3c. This is a non-planar crack 

with a segmented front whose average fracture surface is plane 
0 . The crack 

front at 1x c  runs indefinitely in the 3x direction and is in a 32xx plane. 

We describe  below taking locally B as origin.   is then odd and 

 )2( BA  periodical with respect to 
3x  where A  and B (Figure 3d) 

are the projected length along 
3x  of planar facet A and B  respectively.   is 

given by :  
 

3tan xB  ,                     2/|| 3 Bx   

   )(tan 3   xA ,      ]2/,2/[3 ABBx   .                                          (45) 

 

We assume general loading (mixed mode I+II+III), write tan0  pp  for 

simplicity in (44) for the reduced crack extension force and express the spatial 

average G   of G  defined as 
2

3
0

(1/ 2 )G Gdx


   . We obtain 

(1) (2) (3)G G G G         ; 
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               (46) 

 

  2222

0 1/1/)/(1 ABBABA ppppppppv  , 

  2222

1 1/11/1)/( BABABA ppppppppv  , 

  2222

2 1/1/)/( BBAABABA ppppppppppv                       (47) 

 

and AAp tan , BBp tan . Quantities associated to stresses and 

displacements are given in the Appendix. Hence G  is a function of 

parameters 
12 13( ; , , ; , )t A Bv p p p M M  including Poisson’s ratio ν ; expressions 

with Poisson’s ratio νA originate from normal induced stresses due to Poisson’s 

effect as indicated earlier (Section 2). For 0tv  , the static case ([4-6] for 

example) is recovered; as also are the particular cases of Ox1x3-plane moving 

cracks in pure modes of loading I, II and III [10].When B  (or A ) equals zero, 

the crack front is essentially straight parallel to the 3x direction. The 

corresponding crack is like planar crack 0  (Figure 3a). First, we look for non-

planar cracks for which G   is larger than 1. Such crack configurations have 

been found in the quasi-static analyses [4 - 6]. They are expected to be fracture 

paths in broken real materials. For 0< G   <1, planar cracks are favoured. 

Negative values suggest that crack motion is impeded : in the case of planar 

cracks, we have indicated that the relative displacement of the faces of the 

crack, formed under load, cancels when motion starts [10]. Figure 4 shows G 

(46) for non-planar cracks travelling at 0.3tv  (ϕB= 70°, M12=M13= 10-4).  
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Figure 4 : Surface G  (ϕA, θ) (46) for non-planar cracks moving at 

0.3tv  ; ϕB= 70°, M12=M13= 10-4, ν= 0.22= νA, 13( )t tP   

 

Positive values of G   are observed in a restricted zone of θ (40°< θ <70°, 

approximately), with a peak in the vicinity of θ =50°; this peak increases 

continuously with ϕA to reach values G ≈150 at ϕA ≈70°.  
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Figure 5 : G   (46) as a function of tv  for (a) 55   , (b) 54    and (c) 

53.5    with identical values of the other parameters ( 70A B    ,
3

12 13 10M M   , ν=1/3=νA). A dramatic change in the form of the 

curves is observed for a small variation 1° of θ 
 

Figure 5 ((a) 55   , (b) 54    and (c) 53.5   ) shows a non-planar crack 

whose front is strongly segmented ( 70A B    ) under dominant mode I 

loading ( 3

12 13 10M M   ). When the crack is inclined with respect to Ox1x3 

by 53.5   in (c), G  remains negative for practically all velocity. For a 

small increase of θ (1.5°), G   becomes largely positive over a wide range 

of speed 0.2 1tv   in (a). In (b), a maximum of G   is present at about 

( )

10.55 e

tv v  ; at that velocity, the motion of the crack is uniform along 

x1(steady motion). This result is a theoretical prediction of a steady motion for 

this non-planar crack in solids.  
 

 
 

Figure 6 : Normalized crack extension force G  ( tv ) (46) averaged over 

the length of the segmented crack-front under dominant mode I loading 

( 4

12 13 10M M   ). The average inclination angle with respect to Ox1x3 

is 0 35   . The crack face is almost flat ( 0.1 ; 88A B     ); 

ν=0.22=νA; 13( )t tP  . 13( ) 1t   leaves this curve unchanged 
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Figure 6 corresponds to a rather flat crack ( 0.1A   ; λA large) but with 

pronounced isolated kinks ( 88B   ; λB small) (for λA and λB, see Figure 3d). 

The average inclination angle of the crack with respect to Ox1x3 is 35   . 

Mode I loading is dominant ( 4

12 13 10M M   ). G   is largely above 1 in 

0.3 0.55tv  , approximately. Interestingly, we have checked that 13( ) 1t   

leaves unchanged this curve.  

 
 

V - DISCUSSION 
 

The determination of the elastic fields of dislocations in motion may be 

performed by two general methods called “Method of Fourier series or 

integrals” and “Method of Green’s functions” in review works by Mura [8, 9]. 

The first method, especially powerful for many cases, is the one adopted in the 

present study (Section 2.1); it has been used to obtain the elastic fields of a 

dislocation oscillating in the form of a standing wave [3], for example. The 

dislocation elastic fields measured by an observer in an inertial reference frame 

moving with the dislocation, are like those of a static dislocation in the 

laboratory, particularly in the subsonic regime. This allows to describe static 

and uniformly moving cracks in a similar way. Hence, there is one-one 

similarity in form (in both cases) of crack characteristic quantities: crack 

dislocation distributions DJ (35) and corresponding relative displacements of 

the faces of the crack ϕJ (37), stresses at the tip of the crack
( )( )C J

ij  (41) and 

crack extension force G (42- 44); for the static case, we may refer to [5] and 

references therein.  
 

Most theoretical analyses in fracture mechanics concern planar cracks, with 

straight fronts, in static position or in uniform movement (see Figure 3a for 

illustration). Because the length of the crack front is large in general, the 

modelling applies in practice to cracking over large distances. Crack 

propagation is the mechanism controlling fracture with no place for nucleation. 

For non-planar cracks, the modelling extends to flat-fronted cracks. The crack 

front f (1) is arbitrary (see Figure 1); a simple special case is given in Figure 3c. For 

these non-planar cracks, most of the work refers to the static case. The present 

study is a first extension to the uniform motion of the x2x3-plane front of the 
crack; the static case is restored when v = 0. The numerical application (Section 4) 

here concerns a front made up of 2 types of inclined segments, with angles ϕA and 

ϕB, with respect to the x3-direction (Figure 3c, d). On average, the crack 

fluctuates around the plane π0 (Figure 3a) inclined by θ = θ0 with respect to 

Ox1x3 with Ox3 as the axis of rotation. When the crack front is strongly 

segmented (ϕA = ϕB large) as in Figure 5, the highest positive values of G 
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(46) are for θ> 53.5° in dominant mode I loading. A maximum of G  , 

max1 2.5G    , is observed for 
( )

10.55 e

tv v   with 54    (Figure 5b). For the 

moving planar crack in Ox1x3, the steady motion velocity found is at 0.52tv   for ν= 

1/3 [10]. We may safely say that, for the crack corresponding to Figure 5, the steady 

motion is predicted at the velocity 
( )

1

ev . A second example (in dominant mode I 

loading and 35   ) where the crack front is flat over large distance λA ( 0.1A    ) 

with isolated kinks strongly inclined ( 88B   ) over short distance λB is also 

presented (Figure 6). The velocity interval where G   is positive and larger than 1 

is [0.3, 0.54]tv   , approximately. Out of that interval, the motion of the crack is not 

favoured. A maximum of  G  , max2 11.2G   , is observed at 
( )

20.37 e

tv v  . 

We can also safely say this is the steady motion condition. We shall use Figure 6 to 

provide a qualitative explanation of crack branching observed in glass. Figure 7 shows 

the broken surface of a glass rod in tension [13]. Fracture propagates from bottom to 

top from a surface flaw. Initially, the crack is flat and smooth over a relatively large 

area; then branching occurs. The latter covers a region that is flat on average (ϕA ≈0) 

but comprising pronounced short spaced segmentations (ϕB ≈ 90 °). The crack 

progresses upwards with an increasing speed v from zero; for a certain value v1, it turns 

into a non-plane crack. The transformation takes place without any attenuation of the 

speed regime. Using Figure 6, we propose the following explanation: for tv  < 0.3, the 

planar starter crack is favoured; its speed increases towards the terminal velocity.  

 

 
 

Figure 7 : Fracture surface of broken rod of glass under tension viewed in 

optical microscopy. Fracture propagated from bottom to top. Rod 

diameter 4.5 mm (see [13]) 
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We recall that an estimate of the terminal velocity depending on Poisson’s ratio 

is offered by [10] where it is shown to be about ( ) 0.52e

tv c  for ν= 1/3; it is 

also shown there that above the terminal velocity, the crack extension force for 

the tensile planar crack decreases rapidly towards zero. Figure 6 tells us that 

in the velocity range [0.3, 0.54]tv  non-planar crack configurations (similar 

to that observed in Figure 7) exist with a much larger value of the crack 

extension force. Hence, the starter planar crack transforms itself into a non-

planar configuration to maintain its motion.  

 

 

VI - CONCLUSION 

 

In the present study, non-planar cracks of finite extension in the x1 and x2 

directions and infinite along x3, inside an infinitely extended elastic medium, 

subjected to mixed mode I+II+III loading, have been investigated. The 

loadings 22

a , 21

a  and 23

a  are applied along the x2, x1 and x3 directions, 

respectively. The front of the crack is planar in x2x3 and travels at a constant 

velocity v along the x1 - direction whilst its faces remain stress free. The crack 

front has an average elevation h = h(x1) from Ox1x3 and fluctuates weakly about 

that position in the form ξ= ξ(x1, x3) (1). The crack is represented by a 

continuous distribution of 3 types J (J=I, II and III) of infinitesimal dislocation 

having the shape of the crack front. The associated Burgers vectors 

(0, ,0)Ib b , ( ,0,0)IIb b  and (0,0, )IIIb b  are directed along the applied 

loadings, tension and shears directions, respectively. Adopting the method of 

Fourier series [8, 9] (Section 2.1), we give explicit expression of the elastic 

fields (displacement and stress) of the dislocations J (Sections 3.1 to 3.3). Then, 

distribution functions DJ of straight dislocation arrays corresponding to a 

planar crack π0, inclined by angle θ0 with respect to Ox1x3 are calculated 

(Section 3.4). Adopting these DJ, we propose explicit expressions of the crack-

tip stresses (Section 3.5) and crack extension force per unit length of the crack 

front (Section 3.6) for the general form f (1). The analysis is then applied to a 

simple special non-planar crack with a segmented front (Section 4). This type 

of crack is given on Figure 3c, d; the average surface is plane π0 (Figure 3a) ; 

its front is segmented, at the average elevation h(x1) from Ox1x3 in the x2x3 

located at x1, in the form (45).  We distinguish two types of segmentation 

characterized by angles ϕA and ϕB of the segments with respect to x3 direction. 

We show first that for this type of special cracks, configurations exist for which 

values <G>, averaged over the length of the crack front, are larger than those 

corresponding to the planar crack travelling in Ox1x3 (Figure 4) in similar 

velocity intervals. Then, two types of segmentation are investigated under 

dominant mode I loading : (1) Strong segmentation of the crack front                             
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( 70A B    ), Figure 5. We show that a steady motion sets in at the velocity 

( )

1 0.55e

tv c for an inclination 54   . (2) Weak segmentation, flat average 

fracture surface with isolated strong kinks (ϕA= 0.1°, ϕB= 88°). A steady motion 

is also evidenced at the velocity 
( )

2 0.37e

tv c  when 35   . The latter configuration 

(Figure 6) explains crack branching observed in the fracture of glass.  
 

 

REFERENCES 
 

  [1]  - P. N. B. ANONGBA, A non-planar crack analysis using continuously 
distributed sinusoidal edge dislocations and linear elasticity, Physica 
Stat. Sol. B, 194 (1996) 443 - 452 

  [2]  - P. N. B. ANONGBA and V. VITEK, Significance of the deviations of 
the crack front into the plane perpendicular to the crack propagation 
direction : I. Crack-front dislocation generation, Int. J. Fract., 124 
(2003) 1 - 15 

  [3]  - P. N. B. ANONGBA, Significance of the deviations of the crack front 
into the plane perpendicular to the crack propagation direction : II. 
Crack-front vibration, Int. J. Fract., 124 (2003) 17 - 31 

  [4]  - P. N. B. ANONGBA, A study of the mixed mode I+III loading of a non-
planar crack using infinitesimal dislocations, Rev. Ivoir. Sci. Technol., 
14 (2009) 55 - 86 

  [5]  - P. N. B. ANONGBA, Non-planar crack under general loading : 
dislocation, crack-tip stress and crack extension force, Rev. Ivoir. Sci. 
Technol., 16 (2010) 11 - 50 

  [6]  - P. N. B. ANONGBA, Non-planar crack under general loading and 
induced normal stresses due to Poisson effect, Rev. Ivoir. Sci. Technol., 
30 (2017) 37 - 57 

  [7]  - P. N. B. ANONGBA, Non-planar interface crack under general loading : 
III. Dislocation, crack-tip stress and crack extension force, Rev. Ivoir. Sci. 
Technol., 32 (2018) 10 - 47 

  [8]  - T. MURA, The continuum theory of dislocations, In : "Advances in 
Materials Research" (Edited by H. Herman), Interscience Publications, 
Vol. 3, (1968) 1 - 108 

  [9]  - T. MURA, "Micromechanics of defects in Solids", Martinus Nijhoff 
Publishers, Dordrecht, (1987) 

[10]  - P. N. B. ANONGBA, Planar cracks in uniform motion under mode I and 
II loadings, Rev. Ivoir. Sci. Technol., 35 (2020) 1 - 22 

[11]  - B. A. BILBY and J. D. ESHELBY, Dislocations and the theory of 
fracture, In : ‟Fracture”, Ed. Academic Press (H. Liebowitz), New York, 
Vol. 1, (1968) 99 - 182 

[12]  - J. D. ESHELBY, Aspects of the theory of dislocations, In: “Mechanics 
of solids : The Rodney Hill 60th Anniversary Volume”, Ed. Pergamon 
Press (H.G. Hopkins and M.J. Sewell), Oxford, (1982) 185 - 225 

[13]  - J. W. JOHNSON and D. G. HOLLOWAY, On the shape and size of the 
fracture zones on glass fracture surfaces, Phil. Mag., 14 (1966) 731 - 743 



146  Rev. Ivoir. Sci. Technol., 36 (2020)  119 - 149 

P. N. B. ANONGBA 

APPENDIX 
 

The various quantities involve in the stresses at the tip of the crack (41) and 

crack extension force G (44), Section 3, are given in the following. For terms 

with the superscript ξ in (41), similar relations as in (28) between stress and 

displacement are used here (J= I, II and III) :  

   ( ) ( ) ( )

1 2 3 1,1 2 1 3 2,2

2
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1 2

J J J
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For J=I, II and III, we listed below the various quantities associated to the 

displacements in (A.1).  

For J= I :  
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For J=II: 
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The other stresses and their derivatives of order zero with respect to ξ 

corresponding to the straight dislocation are zero. We have 
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All the other similar quantities associated with the stresses, of zero order with 

respect to ξ, are zero. We have 
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