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ABSTRACT

Non-planar x2xs-plane-fronted cracks with arbitrary shapes, inside an infinitely
extended isotropic elastic medium, whose finite lengths along the x;-direction
increase at a constant velocity 2v, are the subject of the present study. The
mixed mode I+I1+111 loading as well as traction-free crack face condition are
assumed, with loadings o5,, o%,, 0% along Xz, x1 and xs directions
(respectively). The crack front in the xoxs-plane located at spatial position x;
has an average elevation h=h(x1) from Ox1xs and fluctuates weakly there in the
form &=£&(x,%;). The crack is represented by a continuous distribution of
three types J (J=I, Il and I11) of dislocation having the shape of the crack front.
Their Burgers vectors by are directed along the applied tension and shears,

respectively. Explicit expressions of the dislocation elastic fields (displacement and
stress) are first given. Then distribution functions D; of straight dislocations,

corresponding to a planar crack 7, tilted (around Oxs) by angle 6, from Oxuxs, are

given. Adopting these D;, we propose explicit expressions of the crack-tip stresses and
crack extension force G per unit length of the crack front. The analysis is subsequently
applied to a simple special non-planar crack having a crack-front composed by two

types (A and B) of straight segments inclined by angles ¢, and ¢, from the xs-
direction; the average fracture surface is plane 7,. Expressions < G > of G averaged
over the length of the oscillatory crack-front are displayed. Two types of segmentation
under dominant mode | loading are shown: (i) Strong segmentation (g, = ¢ =70°).
At §,=54°, < G > as a function of v displays a maximum <G>nax larger than Go, the

corresponding value of the crack extension force when the moving crack is planar in
Oxixs. This indicates that a steady motion along x; of this non-planar crack
configuration may occur under load in dynamic fracture experiments. (ii)
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Flat fracture surface with isolated segmentations ( ¢,= 0.1°, @, = 88°).
At §,= 35°, < G > (v) displays a maximum larger than Go indicating again that

this configuration can propagate steadily. These configurations explain crack
branching observed in brittle materials.

Keywords : fracture mechanics, linear elasticity, crack propagation and
arrest, dislocations, crack extension force.

RESUME

Fissure non plane en mouvement uniforme sous sollicitation
extérieure arbitraire

Des fissures, ayant une forme non plane arbitraire avec un front plan paralléle
a Xox3 dont les longueurs suivant la direction x; augmentent a vitesse constante
2v, font I’objet de la présente étude ; le milieu de propagation est isotrope,
élastique et infiniment étendu. Le mode de sollicitation est mixte 1+I1+111 avec

des contraintes o,, oy, 0, appliquées le long des directions x2, X1 and X3

(respectivement). On applique la condition que les forces sur les faces de la
fissure sont nulles. Le front de fissure dans le plan x2xs situé en x1 a une cote
moyenne h= h(x1) par rapport a Oxixs et ondule faiblement sous la forme ¢= &
(X1, X3) a cette hauteur. La fissure est représentée par une distribution continue
de trois types J (J=I, 11 et I11) de dislocation ayant la forme du front de fissure.
Leur vecteur de Burgers by sont dirigés le long de la tension et des cisaillements
appliqués, respectivement. Des expressions explicites des champs élastiques
(déplacement et contrainte) des dislocations sont d’abord calculées. Ensuite,
des fonctions de distribution Dy de dislocations droites, correspondant & une

fissure plane 7, tiltée (autour de Oxs) d’un angle 6, a partir de Oxixs sont
données. En adoptant ces Dj, nous proposons des expressions explicites des
contraintes en téte de fissure et de la force d’extension G de la fissure par unité
de longueur du front de fissure. L’analyse est par la suite appliquée & une forme
spéciale de fissure non plane ayant un front constitué de deux types (A et B) de

segment droit inclinés des angles ¢, and ¢, par rapport a la direction xs ; la
surface de rupture moyenne est le plan z,. Des expressions < G > de G

moyennée sur la longueur du front oscillant de la fissure sont données. Deux
types de segmentation, sous un mode | de sollicitation en tension dominant,
sont exhibés : (i) Forte segmentation (¢, = ¢, =70°). Pour §,=54°, <G > en
fonction de v présente un maximum < G >max plus élevé que Go, la valeur
correspondante de la force d’extension de la fissure plane voyageant dans le
plan Ox1x3. Ceci indique qu’un mouvement stationnaire de cette configuration
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de fissure non plane peut se développer sous charge dans des essais de fracture.
(ii) Surface de fracture plate avec des segmentations isolées ( ¢, = 0.1°, ¢, = 88°).

Pour = 35°, < G >(v) exhibe un maximum plus grand que Go indiquant de

nouveau que cette deuxieme configuration de fissure peut se propager a vitesse
stationnaire sous tension dominant. Ces configurations de fissure expliquent
bien la ramification des fissures observée dans des matériaux fragiles.

Mots-clés : mécanique de la rupture, élasticité linéaire, propagation et arrét
de fissure, dislocation, force d’extension de fissure.

I - INTRODUCTION

This work is a first attempt to analyse non-planar cracks in motion in an elastic
medium by using explicit expressions of the elastic fields (displacement and stress)
of moving crack dislocations. In previous studies [1 - 7], non-planar cracks are
static with their planar front developed in a Fourier series. They are described
by a continuous superposition of sinusoidal dislocations. We shall provide a
generalization of this modelling by allowing the crack front plane to move
uniformly at a velocity v in the subsonic velocity regime (v < ct, the velocity
of transverse sound waves). We consider an isotropic, elastic and infinitely
extended medium to which we attach a Cartesian system xi. It consists of a non-
planar crack of finite extensions along x1 and x2 and infinite in the xs- direction.
Initially the crack is static and extends along x1 from x;= -a to a. It spreads at
any xi- spatial position in the xox3- plane in the form of a Fourier series

f=>"(& sink, X, + 5,05 x,X, )+ h(X) = £(%, %) + h(X,) (1)

Here n is a positive integer; h, &, 6, and «, are real that are x, —dependent.

The static case has been treated in [5, 6]. Figure 1 gives an illustration of the
crack front. At a given time taken as t= 0 and under general loading, it starts
moving at constant velocity v in the xi- direction. Its extension after
incremental time t is given by |x | <c=a+vt. In addition to moving uniformly
along x1, we demand that the crack faces be free from any traction. The loadings
correspond to mixed mode 1+11+111 with tension o, and shears o5 and o,

applied at infinity. The treatment also includes normal induced stresses oy, =

04, =—V0o,, originating from the Poisson’s effect. The crack is represented by
a continuous distribution of three types of infinitesimal moving dislocations J
(3=I, 11 and 111) having the shape f (1) with Burgers vectors b, =(0,b,0),
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b, =(b,0,0) and b, =(0,0,b),respectively. Types | and Il are of edge
character on average and type I11 screw.

Figure 1 : lllustration of the crack front that lies in x2x3 in the form f (1).
Mixed mode I+11+111 loading is assumed with loadings o5, , o5,

o4, along xz, x1 and xs directions (respectively)

Dislocation distributions Dy (J=1, Il and I11) are defined such that D, (x )dx,
represents the number of dislocations J in the infinitesimal x, — interval dx,
located about the x, — spatial position x, . The elastic fields (displacement g
and stress (o)) of the dislocation J located at x, = x, = vt in the medium may
be deduced from those (moving sinusoidal dislocations) located at x, = x, with
simple form A, =&, sink, X, in Xzxs-planes (Figure 2). For the later, the elastic
fields at X = (x, x,,X;) are (to linear term in amplitude &)

GO (%) =0 (y;, %,) + T (Y, %, %)
@)V (%) = () VO (y,, %,) + ()™ (y,, X, X5) @)

y,=x —x; 0V%and (o) are of zero order, they correspond to the fields
of a moving straight dislocation J (parallel to x3s) at x, =X, on Oxixs with

Burgers vector b,; " and (¢)®* are oscillating parts involving A, or its
spatial xs -derivative 0A, / Ox, .
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¥ X3 =

Figure 2 : Infinitely long sinusoidal dislocation travelling uniformly at
constant speed v in the x1- direction with Burgers vector b, directed

along x1(J=M), x2 (J=I) and x3 (J= I11); the dislocation at the origin
(t=0) and after incremental time t are illustrated

When the dislocation exhibits shape f (1), the elastic fields take the form

0O (R) =T (y,, ¥,) + 2,07 (3, Y0 %) =00+,

@ (0 =@ (1Y) + L@ (Yo 0) = (@0 (@ ()

Y, =X, —h; here Ay stands for A =¢& sink,X,+3,cosk,X,. In Section 2

(Methodology), the procedure for determining the dislocation J elastic fields
and crack analysis are presented. In Section 3 are listed expressions of the
dislocation elastic fields, distribution functions of crack dislocations, crack-tip
stresses and crack extension force. A numerical application is given with a
special non-planar crack in Section 4. Sections 5 and 6 are devoted to the
discussion and conclusion, respectively.

Il - METHODOLOGY
I1-1. Elastic fields of uniformly moving crack dislocations

The three types J (J=I, Il and I11) of crack dislocation considered have Burgers
vectors b, = (0,b,0), b, =(b,0,0) and b, =(0,0,b) ; they spread in the XxXs-
plane located at x, = x, = vt in the form of a Fourier series f (1). We shall make
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use of the displacement u_(X,t), m=1, 2 and 3, (see (5) below) due to a plastic
distortion 7 (X,t) given as a periodic function of coordinates and time

,8: _ ,B”* (R'1 a))ei(thrlz.X) (4)

where k = (k;,k,,k,) and e are arbitrary constants. Mura [8, 9] has shown the
associated displacement component to be

Um ()_(., t) = _iklcklji Lmkﬁi;‘ei((uHIZ_X) (5)

For isotropic material,

L ®.w)= Sen (A +2)K? = par® ) =K K, (A+ 1) ©)
e (k> = pa® ) ((A+2u)k* - par” )

where k* =k’ +kZ +kZ and

Cji = 4848 + 11646y + 116,46, (7)

&, being the Kronecker delta and 4 and p are Lamé’s constants. The plastic
distortions 3 (%,t)associated to the dislocations J (J=1, Il and IlI), are
expressed successively to first order in & assuming & in (1) small.

:81*2(”()_(”'[) :b5(y1)H(yz)_bégé‘(yl)é‘(yz) (8)

the other components of the plastic distortion are zero; ¢ and H are the Dirac
delta and Heaviside step functions, respectively; y, =x —vt andy, =x,—h .

Here, the first term is due to a straight edge dislocation displaced by x.=h from
the Ox1x3- plane. The corresponding displacement can be derived by replacing
X2 by (x2 — h) in the displacement of a straight edge | dislocation at x, = x, =vt
(travelling in the Ox1xs- plane at velocity v in the xi- direction; in the present
geometry, see [10]). We shall therefore concentrate on the second term denoted
B¢ Its Fourier form is taken from [5]:

o o0

(1) =_$Z'[OJ;(Znei(w”leh) +7nei((ut+ﬁ.ih))dkldk2 9)
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7\_1

k1 k. K =kz,k— —x,) s K= (K ko ks =K,) 0 R = (% Y20 %)
+ig,,

=0,—1&,, o=—-KV.

N

n?'

Bi04(9) is a superposition of wave expressions of the form (4). Therefore,

associated displacement u{’¢(x,t)is a similar superposition of the
displacement (5) :

uf("%: . ZJ. .[( IkaIZlek(k )2, gl ()

—00 —00

ik Cyy Ly (K, @) Z £1HHE ) )dkldkz (10)

We now consider the dislocation J= Il with form (1) at x, =x =vt. For

convenience, we follow the presentation in [5]. The elastic fields due to this
dislocation can be derived from those of a sinusoidal dislocation located at

X, = X, with the same Burgers vector, lying in the x2x3- plane and defined by
X, = A, =& sink, X, (see Figure 2 for illustration). There are two non-zero
components of the plastic distortion:

*(1)(n) _ b _ _
21 —1 (8A1/GX3)2 5(X2 A1)H( Y1)’
;1“')(”) aph /ax3 *(”)(ﬂ) (11)

We assume that both An and 6A, / ox,are small in magnitude: corresponding
Fourier forms used in the sequel are

*(1)(n) _ o*(11)(0) *(11)
21 = S + B &

;1(||)(0) ib II 1 @i @tk +ho) e dk,

(27[) oo K,
« |b§n 0 K i(wt+k . i(wt+K.
21(II)A]=87T2JDJ;E2(e(t kX)_e(tki))dkldk2 (12)
*(11)(n n il 1/ ik x i(ot+k.x
e | Uok_( (o) g glletsk ))dkldkz (13)

iy

B corresponds to a straight edge dislocation located at x, = x, in Oxixs;
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the corresponding elastic fields in the present study are known [10]. In these

fields, we just replace x2 by (x2-h) to obtain the elastic fields of the straight
dislocation at x, = x, displaced by xo= h from the Oxuxs-plane. This gives the
non-oscillating part of the elastic fields of crack dislocations 11 with form f (1).

With two non-zero components B, and g;{") , their oscillating parts for the
displacement read :

w0 =i 3 ] T ([l + kLB € o)

(KL = 5, L) B (K @0) [ ] (K, Ly + Ko L) Bl (K )

+(lem3 +Kn Lrnl)ﬁ:;l(”)(n)(lz 1a)):|ei(w’[+lz.ih))dk1dk2 (14)
o A ib& k
Bl (/) =~ BN R o) = g5
87k,
— () i — () ibx, &,
BOR o) = O o) =~ i (15)
87k,

lek = Lmk(lzlia))’ I-mk :Lmk(lz!a))'

For the average screw dislocation 111 with form f (1) at x =X, the non-zero
component of the plastic distortion used previously [5] is written to first order in &

B (,1) = bS(y,)H (y,) —bES(,)S(Y,) (16)

Here, the first term B{"* is due to a straight screw at x, = x, with elevation
X2=h from Oxixs. Its Fourier form reads

1*3(””(0) ::" J Blz(lll)(O)ei(rut+k1x1+k2y2)dkldk2 (17)
2+(0©) _ _ ib
s 47z'2k2

Using the displacement (5) associated with a single wave plastic distortion, we
obtain
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u(III)(O) I I Ik Ckllemk *(III)(O)e (Ut+k1X1+k2(X2 h) dk dk (18)

—00 —00

Because B{"" (16) and ;" (8) are identical in form, we can make use of the
Fourier form (9) for the second term 5;{""< in (16). Using (5), we obtain the
associated displacement u{")¢(%,t) to be

mne Ij *(III)AH I C L i(ot+k%)
Un Z ( IkICkI31Lmke “ "

—00 —00

ik Gz L (K, )€l ) i, (19)
Zemya, _ _ 10,
13 8_2
At this stage, we can write down the various displacements G’ (J=1, Il and 11I)

associated with the three types J of crack dislocation with form f (1). The stress
fields (o)” can be obtained by differentiating the displacements. Our

calculation results are displayed in Section 3.

I1-2. Crack analysis

The crack system (Figure 1) has been described earlier in Section 1. The
requirements are that (i) the front (xxs- plane) of the crack moves at constant
velocity v along the x:- direction and (ii) the crack faces remain free from any
traction. The latter condition reads

G,, —Of [0x,0,, —Of 10%;6,5,=0
G,y —Of 10X,5,, —Of 1 0X,5,, =0 (20)
G,y —Of [ 0X,G,3—OF [ 0X,55, =0

o; stands for the total stress at any point P (x,,X,,X;) in the medium and is
linked to D, . In (20), we are concerned with the positions on the crack faces
only. We write &;; as

G, =0 + 0l 4 g 4 O (21)

()" is the externally applied stress including normal induced stresses from
Poisson effect,
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—V, 05 Oy 0
()= o O O3 (22)
0 O —VaOz
oD (X% %) = [0 (4 =X, %, %,)D, (x)dx, (=1, Il and 111) (23)

iﬁ” is the stress due to the crack dislocation J located at x, =x,_ in the

distribution. (20) gives three integral equations the resolution of which yields
the D;. The relative displacements ¢, of the faces of the crack in the x;-direction
(J=I1), x2- direction (J=I) and xs- direction (J=I1I) are obtained by integration
from the relation dg, =—bD, (x,)dx,:

(oF

¢, (%) = [bD, (x)dx; , x| <c (24)

From (21) to (23), one can obtain the crack-tip stresses. The crack extension
force G per unit length of the crack front is defined in previous works (see [5,
6, 10, 11], for example). Figure 3 is a schematic representation of simple
special cracks captured by the modelling. The cracks extend in the

X, —direction from X, =—C to ¢ and must be considered to run indefinitely in
the X, —direction. The crack shape in planes perpendicular to X, is described
by & (Figure 3c for example). The shape f of the crack in planes
perpendicular to X, is given by both &, through the x;, —dependence of
positive quantities &,, o, and x, (1), and function h=h(x). Since & is
assumed to be small oscillating function, the average fracture plane is described
correctly by the equation x, =h(x,). When & =0, the crack dislocations are
straight parallel to x5 and distributed over the surface x, =h(x,). Specific
examples are (Figure 3) :
e h(x)=pyX (P, 20)and &=0. This corresponds to a planar crack =,
(with a straight front parallel to x,) rotated around Ox, by angle
6, =tan™ p, from Oxx,, Figure 3a.
e h(x) is an arbitrary function of x,, &=0. The sketch in Figure 3b

corresponds to h odd although this is not mandatory. Actually hodd
conforms well to homogeneity of the medium, geometry of the applied

loadings and D, (Section 3) approximations adopted in the present study.
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o h(x)=pox (po=0) and &=£&(x3) independent of x,. The crack
fluctuates about plane z,with a front spreading in planes parallel to
X,X, In the form &. In the example displayed in Figure 3c the crack

consists of planar facets with inclination angles ¢, and ¢, (Figure 3d) at
points A and B of the crack front located on the average fracture plane.

h(c)f---------- 38

\

©®

Figure 3 : Simple special cracks. (a) Inclined planar crack =, (see text). (b) A
non-planar crack (parallel to x,) ashodd function of x, (X, =h(x))).
(c) Non-planar crack fluctuating about an average inclined plane r, .
The crack consists of planar facets; its fronts at X, =%C lie in X,X; —
planes. AtX, =c, the crack front is characterized by inclination angles

¢, and ¢, (see (d)) at points A and B located on the average fracture

plane. (d) Sketch of the crack front in (c) with B taken as origin. In
this geometry (from (a) to (c)) the general loading of the crack

systems corresponds to uniform applied o5,, 07, and o, at infinity in
the X,, X, and X, directions, respectively
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11 - RESULTS

I11-1. Elastic fields of crack dislocation |

We consider a dislocation | with Burgers vector b, = (0,b,0) lying indefinitely

in the xs- direction and spreading in the x2xs- plane at x, = x1 = vt in the Fourier series
form f (1). The elastic fields take form (3). We get at spatial position (X1, X2, X3) :

2 2
u© = %(5”11 {iln (- rt:|+5m2 {tanlL—P—Z;tanl LD (25)
70 R R Ry, R Y.

o _ 4 [2+(1—203)\7t2 _2P§j

(o
11 ﬂ'VtZ 1 PIrIZ Ptrt2

o 2P (1 1
22 72_\72 1 PrZ P||'|2 !

t

(|)(0) ub(1-2c?) yl
R

((0) _ I 2t
21 ~t2 y2 [ I’,2 Ptrtg ) ( )

v, =v/c, P?=1-V?, P?=1-V?/2;
V,=vi/c, PP=1-V; r’=y +P?:, s=tandl; c.=c/c;

the subscript m takes the values 1 and 2, and ct and ¢, are the velocities of
transverse and longitudinal sound waves, respectively. Other elastic field
components are zero. The oscillating parts of the elastic fields take the forms:

u(l)f b Z'Ahi(_%zt 0[ (t)] 2(1 V)C* O[Zr(]l)]J’

v "o, P (1-2v)R
b \ | 1+-y 20-v)c? -
u(')i K Z(t) +2 | (t)y _ I Q) ,
2 2l ZA‘(P oy, olzn ] axipt 1-2v)P D
Wi = b( j)ZaA“ o [ (1-2v)c.” TO_ 2(1- V)|(|) 27)
i, OXy OX, P P
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2p auhs auhs
ai‘i”‘f=—[ Sy (L=v) + V(3 +85)| T +[8, (L= V) + V(S + 55) | S2—
1—21/[1 2 S]axl [2 1 3]8X2
au"e )
+[6s-V)+v(5, +8,)]—— |, 1=1,2and 3,
ax3
o™ ouf*
e _ i e R A 28
% ﬂ[ ox; o, J (28)

29 = (e, [RWYE+ P, TO = [K [2] dy, s=tand
Y1
Kn[z] is the nth- order modified Bessel function usually so denoted and z®

stands for z* with y instead of y.

111-2. Elastic fields of crack dislocation 11

The dislocation Il has Burgers vector 6,, =(b,0,0) and spreads in the xoxs-

plane at x, = x, = vt in the Fourier series form f (1). The elastic fields have form
(3). We obtain:

2
uy @ = L~2 S {H Inr, B, rt}ém{Pﬁ tan? A _tan~ L} (29)
7TV, Pt Pty2 I:)|Y2

S yZ[ZF’tZF’z? N P.[(cf—zzﬁz—cf]]’
7ZVt rt rl
S0 _ M0 RIR’c:*—c”+2] 2RP;
? \7t2 2 rlz rt2 '
S __ HDA=2C)R y,
33 >
oo
2ub P P!
(IN(0) _ P,
e 30
21 72'\7t2 Y1[r|2 Ptrtzj ( )

Other elastic fields of zero order with respect to A, are zero. The oscillating
parts of the displacement are :
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b o | 41-v)c’P | 2
(¢ _ - | K M1_ 2_ PK (t)
ul 277\75 §A1 (53/1 |: 1_ 2V O[Zn ] ( Vt ) t O[Zn ]:|

K20 [ (L-2v)e? —2(1-v) [TY
P

t

_ 2
+78(y,)sgn y, | ¥/ —2+M
1-2v

e w2 @-2v)c? - 2(1v)]U

! 2

b o (| 2(1-v)c? (2-7)K,[z"]
u(||)§: 112728 _ t ol%n
B Y H 1-2v } ORI R

t

+ 4(1—V)CEP| KO[ZISI)]] ,

1-2v
(1-2v)1-c*)(2-F)K,[2"]
P

t

b 0
ulms = ﬁzn:a—z‘(ﬂl—v)(l—&)RKo[Zﬁl)]+

t

+[(1— 21)(2-¢2)—2(1-v)(2C? —D}ré(yz)lyllj (31)

The associated stress fields are obtained by differentiating the displacements
with similar relations as in (28).

111-3. Elastic fields of crack dislocation 111

The dislocation 111 has Burgers vector b, =(0,0,b) and spreads in the X2xs-
plane at x, = x, = vt in the Fourier series form f (1). The elastic fields have form

(3). For the non-oscillating part of the displacement, the only non-zero
component is

uélll)(o) — bz tan—l Ptyz (32)
275 Y1

B stands for B?. Surprisingly /7., =1 when the displacement u{""is
derived from the plastic distortion f,,(X,t) for which it is assumed that a slip
b = (0,0,b) is produced in the xix3- plane for x1 < vt [8, 12]. Hence, it is
questioned to see the effect of this difference in both values of u{"®. We

observe no change in the reduced crack extension force (see Figure 6 in
Section 4) for a special non-planar crack with a segmented front.
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bP bP
o - R Ry ®
271',513(0 I 277:313(0 I
The compressive (" (i=1, 2 and 3) stresses are zero, as also o%;""® . The
oscillating parts of the displacement read:

ume = 25 %A [vtz—z(c;z Di-2v) Ko[zﬁ”]+—4(l_v;(l_c’g) Ko[z,ﬁ”])

27097 v ox, P ,

ume _ b(c:’ ~1) 5. OA i[l—ZV o _20-v)el |‘<'>] 34)

7T\7t2 n O%; OX, R R

~2 ® _o\T® —v)c? _
u3(|||)¢ _ ; b~2 A £6K0[Zn ]—ZKnZ(C;Z 1) 1-2v)I _ 2(1-v)c. ro ||
a R oy R R

t
The associated stress fields (o)’<are obtained by differentiating the
displacements.

I11-4. Crack dislocation distributions

Assume first that the dislocations are straight parallel to the X, —direction
(£=0)and h(x)= p,X, depends linearly on X, with p, positive constant
(Figure 3a). We thus have a planar crack of finite extension, with straight
fronts running indefinitely along X,, rotated (from OXx X,) about the positive
X, —direction by €, =tan™ p,. The crack extends from X, =—C to c and is
subjected to mixed mode 1+11+111 with loadings applied at infinity. Under such
conditions, we have of /%, =oh/ox, = pg, Of /0x3 =0&10%; =0; making use of
the traction -free crack face condition (20) and stresses from moving straight
dislocations J, the dislocation distributions D; are obtained in the form

D,(x)=d,D{’(x), J=1 IandIll (35)

Dé” corresponds to the equilibrium distribution of straight dislocations J when

the crack is planar in the Oxixs- plane (po= 0), extending from x;= -c to ¢, under
pure mode J loading (see [10] for J=I and I1). The calculation results are listed

(M, 2051/0;2):
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D(l)(xl): 032 X c) — Iub(Z—VtZ) i_i
A et A \ROR)

t
(M12+VApO)(C(II)(l) /C(ll)(Z)) 1+ po 12
C(l) /C(l)

cnw _ Hbp Py R
2p2 2p2 !
7 | R(1+p5P?) 1+pgR

c(h@ — (b L [2+ po {2+(1 2c: )V }} _ szi(Pzi + pgRZ)]

d =

s 1+ poR’ R+ poR*)

cHAch® _ch@dctm
c(ne !

cOW _ 2ub( Px (1+ ijﬁ) Py + Po P’
= 252\ 252\ |’
7% R (1+piR’) R(1+piR’)

cthe _ HbPy Py N 1 .
7 | R(1+piR?) R(1+piR?)
D(|| (Xl) 621 Xl C(”) _ le’lb(F)tF)l - P2£':)
C (1) ’C —Xiz ! 0 72_\7t2|3t !
(1_ poMlz)(C(l)(Z) /C(I)(l))_ Mlz —Va po C(Il) C(l) C (e .
MlZ(C(“) /Cé“)) ! C (Hy

C0 ¢t - Xf 272;8123(0

c) =

dll =

(%)= (36)

The corresponding relative displacements ¢, of the faces of the crack, in the
X2 (J=1), x2 (J = 1) and x3 (J = II1) directions, are

¢J (Xl) = dJ ¢(§J)(X1) (37)
¢(§” corresponds to the relative displacement of the crack faces when the crack

is in Oxuxs- plane under pure mode J loading. They are given by [10] for J=I
and Il. We have
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O. U (7
A (%)== (Cff) 5J.+C(2|,1) 5J..+C(fﬁ) 5J.,,]«/ , J=I, lland 11 (38)

D; is unbounded at x1= +c and the corresponding ¢, vertical at these end

points. In its general form (20) requires a numerical resolution. We shall
progress further by providing approximate expressions for the stress about the
crack front and crack extension force with f given by (1) using D; (35) when the
average fracture surface h=h(x.) can be approximated by plane = of Figure 3a.

I11-5. Stresses about the crack-tip

We consider P (x;,X,, ;) about the crack front located at x, =c; hence X, is
close to h since the fracture surface is given by f =h+¢& with & small.
Writing X, =c+s (0<s<<c), from (21) the stress at P is identified to the
following formula:

1 c

o378, %, %) =D [ of (€ +5 =%, %, %)D, (x)dx,,  Sc<<cC (39)

J=lc-oc

This stress expression means that only those dislocations located about the
crack frontin x, —interval [c—oC , c]will contribute significantly to the stress at
X, =C+S ahead of the crack tip as s tends to zero ; any other contribution will be

negligible for a sufficiently small value of s. We observe that this formula is
precise with no place for any other kind of additional stress term. Because X is

close to h, we can consider the Taylor series expansion of (”(Xl — X%, %y, %;) in
(39) about x, =h(x,) to first order with respect to (x, —h) ; this gives

(9)
0 (=%, 56) = 01 06 =X, ) +

2

(x, —h)+o(x, —h) (40)

where o(x, —h) is the complementary part of the series. Applying the Taylor
expansion (40), in oy (%, —x,h(x),%;) and do}” / &x,(in which x =c+s),
appears the difference (h(x,) —h(x,)) which we express as follows since x,
and x, (see (39)) are close to ¢ : h(x)=h(c)+ p(x,—c)+o(x —c) and
h(x,) =h(c) + p(x, —c)+0(x, —C) where p=oh(c)/ox;  therefore
h(x) —h(x) = p(x —%)+0(x, —x). Furthermore in o\~ (39) we restrict
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ourselves to singularities of the type s'?only; this is the singularity that comes
into play in the study of planar cracks and gives a well-defined value to the
crack extension force. This corresponds to identify aiﬁ” to the unbounded
terms with 1/ (c+s—x,") in the Taylor expansion (40). Assuming &(x,, X;) and
its spatial derivatives with respect to x, be bounded at x, =c, the involved
integrals in (39) are of the type IDJ (x,)/ (c+s—x dx, "which is calculated
approximately taking for D, the straight edge and screw dislocation
distributions (35) corresponding to a planar crack 7z, with a straight front

parallel to x, (Figure 3a). We obtain (o\” = 0" + (M + 5Ny

) o050 550)¢ (0)
GlO0 =| GO 1 G 4 (x _h(c)) % | 9% dJJ K3 (41)
OX, X, | )CO2zxs

o _/ a a 8
K5’ =«/7cC (6225J| + 05,05 + 0530y, )

In (41), x2 is close to h(c), this means that (xo-h) remains small; the various
quantities associated with stresses are given in the Appendix.

I11-6. Crack extension force

The crack extension force G per unit length of the crack front is calculated in
the same way as in [5]. We defined a reduced crack extension force G as

é:G/(GéI)-FGé“)-I-Gé“I)); GO — bKﬁO)

° 4nC{" (42

G’ is the crack extension force per unit edge length for planar straight-fronted

cracks in Oxixs, extending steadily from x;= -c to ¢, under pure mode J loading.
We obtain the reduced crack extension force at Pc (x1= ¢, xo=f, x3) as (with

— a a — a a — a a
M, =0y, /05, My=05103,, My=0510;)

6(P)= .60 (R) (43)

i,j=1
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Ay El"‘(Cél) /Cé“))MfZ +(C(§I) /Cém))Mlzs-

Here, quantities associated with stresses are given in the Appendix. In Section
4, we give a more detailed description of G for a special plane-fronted non-
planar crack with a segmented front (Figure 3c).

IV - SPECIAL RESULT : PARTICULAR NON-PLANAR CRACK WITH
A SEGMENTED FRONT

The example we shall describe is given in Figure 3c. This is a non-planar crack
with a segmented front whose average fracture surface is plane r,. The crack

front at x, =c runs indefinitely in the x, —direction and is in a x,x, — plane.
We describe ¢&below taking locallyBas origin. & is then odd and
(24 =4, + A;) —periodical with respect to x, where 4, and A, (Figure 3d)
are the projected length along x, of planar facet AandB respectively. & is
given by :

& =tanggXs, | X5 |< A5 12
=tang,(—%;,+ 1), X €[A5/2, Az/12+4,]. (45)

We assume general loading (mixed mode I+11+111), write p, = p=tand for
simplicity in (44) for the reduced crack extension force and express the spatial
22
average <G > of G defined as <G >=(1/24) | Gdx, . We obtain
0
<G>=<G¥ >+<G?>+<GO >;

< G~(1) > Cé')dn M12 (dm M13 {_&(lu)w) _ 2# Po [(1—\/)01("1”) A1) NUD)

+vu +vu
Cé“)Am Cé"') 13 1-2v 2.2 33

d d,M
AN ka3 L (n) 5 a) V%2 (A o pan
+,U[u1,2 Uz, J}Vl_lu{_cu)(ulﬁ +u3,1)+ cm (u1,3 +u3,1> V,
0 0

d, d,M
~(1)(0) | ~(1)(0) n'Vi ~(I)(0) |, ~()(0)
+{ |)(—p00'11 t0p, )+ c (_poo'n + 07, )Vo ,
0
d

M - 2 R n N
Vi3 —0'2,“)(0)"'1 /21 [vul("l”)+(1—v)u§f'2')+vu§"3")]
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o d, oy oy My,
[0+ Tl 02 S0 402
0

d . d,M,, - -
+{C")( 0,6 (l)(0>+0§;)(0))+ & ( P60 4 (II)(O))}VOJ!

dIIICéI)MlS _ d,M;;2u
Cém)Alzs Cé”')(l—Zv)

<G®¥>= (val” +vad + @-v)asy by,

d d, M

1 1) L) AON0! ~(1)(0) 'Vl NSO

+{ (_:upo [ul,B +U311J+IIJ[U2’3 +U312]—U33 )+ cm —HP, |:u1,3 +U;; :|
0

ﬂM@wm]¢w0ﬁ+%M{powm+wwa @

o =/(p,+ pB))(pA/ 1+ p*+ pj + Pg 1+ p* + pi),
L =(PaPs /(Ps+ pB))(—ll 1+ p? + pi +1/41+ p* + pj )

=(pApB/(pA+pB (pA/\/1+ P®+ Pa + Pg / 1+ p2+p§) (47)

and p,=tang,, pg=tangd,. Quantities associated to stresses and

displacements are given in the Appendix. Hence <G >is a function of
parameters (V,; p, P, Ps; M,,, M,;) including Poisson’s ratio v ; expressions
with Poisson’s ratio va originate from normal induced stresses due to Poisson’s

effect as indicated earlier (Section 2). For V, =0, the static case ([4-6] for
example) is recovered; as also are the particular cases of Oxixz-plane moving
cracks in pure modes of loading I, Il and I11 [10].When ¢, (or ¢, ) equals zero,
the crack front is essentially straight parallel to the x,—direction. The
corresponding crack is like planar crack z, (Figure 3a). First, we look for non-
planar cracks for which < G>is larger than 1. Such crack configurations have
been found in the quasi-static analyses [4 - 6]. They are expected to be fracture

paths in broken real materials. For 0< <G> <1, planar cracks are favoured.
Negative values suggest that crack motion is impeded : in the case of planar
cracks, we have indicated that the relative displacement of the faces of the

crack, formed under load, cancels when motion starts [10]. Figure 4 shows < G>
(46) for non-planar cracks travelling at ¥, = 0.3 (¢s= 70°, M12=My3= 10%).
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Figure 4 : Surface <G > (g 6) (46) for non-planar cracks moving at
V., =0.3; ¢g= 70°, M12=Mu3= 10% v=0.22= vy, ﬁl3(t) =P

Positive values of <G > are observed in a restricted zone of § (40°< 6 <70°,
approximately), with a peak in the vicinity of 8 =50°; this peak increases

continuously with ¢a to reach values <G >=150 at ¢a ~70°.
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Figure 5: <G > (46) as a function of v, for (a) 8=55°, (b) #=54° and (c)
6 =53.5° with identical values of the other parameters (¢, = ¢, = 70°,

M, =M,, =107, v=1/3=va). A dramatic change in the form of the
curves is observed for a small variation 1° of 0

Figure5((a) 8=55°, (b) #=54° and (c) & =53.5°) shows a non-planar crack
whose front is strongly segmented (¢, =¢, =70°) under dominant mode |
loading (M,, = M,, =10"). When the crack is inclined with respect to Oxuxs

by #=53.5%in (c), <G >remains negative for practically all velocity. For a
small increase of 8 (1.5°), <G > becomes largely positive over a wide range
of speed 0.2<V <1 in (a). In (b), a maximum of <G > is present at about
V,=0.55=V; at that velocity, the motion of the crack is uniform along

x1(steady motion). This result is a theoretical prediction of a steady motion for
this non-planar crack in solids.

15 ~
<G>
10+

i I I I I
0.25 0.3 0.35 04 0.45 0.5 0.55 1’; 0.6
t

Figure 6 : Normalized crack extension force < G >(V,) (46) averaged over
the length of the segmented crack-front under dominant mode | loading
(M, =M, =10"). The average inclination angle with respect to Oxixs

is@, =35°. The crack face is almost flat (¢, =0.1° ¢, =88°);
v=0.22=v; By =P B =1 leaves this curve unchanged
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Figure 6 corresponds to a rather flat crack (¢, =0.1°; Aa large) but with
pronounced isolated kinks (g, =88°; As small) (for 1 and As, see Figure 3d).
The average inclination angle of the crack with respect to Oxixs is@=35°.
Mode | loading is dominant (M, =M, =10""). <G> is largely above 1 in
0.3<V, <0.55, approximately. Interestingly, we have checked that £, =1
leaves unchanged this curve.

V - DISCUSSION

The determination of the elastic fields of dislocations in motion may be
performed by two general methods called “Method of Fourier series or
integrals” and “Method of Green’s functions” in review works by Mura [8, 9].
The first method, especially powerful for many cases, is the one adopted in the
present study (Section 2.1); it has been used to obtain the elastic fields of a
dislocation oscillating in the form of a standing wave [3], for example. The
dislocation elastic fields measured by an observer in an inertial reference frame
moving with the dislocation, are like those of a static dislocation in the
laboratory, particularly in the subsonic regime. This allows to describe static
and uniformly moving cracks in a similar way. Hence, there is one-one
similarity in form (in both cases) of crack characteristic quantities: crack
dislocation distributions D; (35) and corresponding relative displacements of

the faces of the crack ¢ (37), stresses at the tip of the crack o (41) and

crack extension force G (42- 44); for the static case, we may refer to [5] and
references therein.

Most theoretical analyses in fracture mechanics concern planar cracks, with
straight fronts, in static position or in uniform movement (see Figure 3a for
illustration). Because the length of the crack front is large in general, the
modelling applies in practice to cracking over large distances. Crack
propagation is the mechanism controlling fracture with no place for nucleation.
For non-planar cracks, the modelling extends to flat-fronted cracks. The crack
front f (1) is arbitrary (see Figure 1); a simple special case is given in Figure 3c. For
these non-planar cracks, most of the work refers to the static case. The present
study is a first extension to the uniform motion of the x2xs-plane front of the
crack; the static case is restored when v = 0. The numerical application (Section 4)
here concerns a front made up of 2 types of inclined segments, with angles ¢a and
#B, with respect to the xs-direction (Figure 3c, d). On average, the crack
fluctuates around the plane zo (Figure 3a) inclined by 6 = 6y with respect to
Oxixs with Oxz as the axis of rotation. When the crack front is strongly

segmented (4a = ¢g large) as in Figure 5, the highest positive values of < G>
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(46) are for #> 53.5° in dominant mode | loading. A maximum of <G>,
<G>, =25 isobserved for ¥, =0.55=V with §=54° (Figure 5b). For the

max1=
moving planar crack in Oxuxs, the steady motion velocity found is at V, = 0.52 for v=
1/3 [10]. We may safely say that, for the crack corresponding to Figure 5, the steady
motion is predicted at the velocity \71(9). A second example (in dominant mode |

loading and & =35°) where the crack front is flat over large distance 2a (¢, =0.1°)
with isolated kinks strongly inclined (¢, =88°) over short distance /s is also

presented (Figure 6). The velocity interval where < G>is positive and larger than 1
is V, €[0.3, 0.54] , approximately. Out of that interval, the motion of the crack is not

favoured. A maximum of <G>, <G> _.=11.2 is observed at Vv, =0.37=00.

max2—
We can also safely say this is the steady motion condition. We shall use Figure 6 to
provide a qualitative explanation of crack branching observed in glass. Figure 7 shows
the broken surface of a glass rod in tension [13]. Fracture propagates from bottom to
top from a surface flaw. Initially, the crack is flat and smooth over a relatively large
area; then branching occurs. The latter covers a region that is flat on average (#a ~0)
but comprising pronounced short spaced segmentations (¢s = 90 °). The crack
progresses upwards with an increasing speed v from zero; for a certain value vy, it turns
into a non-plane crack. The transformation takes place without any attenuation of the

speed regime. Using Figure 6, we propose the following explanation: for V, <0.3, the
planar starter crack is favoured; its speed increases towards the terminal velocity.

Figure 7 : Fracture surface of broken rod of glass under tension viewed in
optical microscopy. Fracture propagated from bottom to top. Rod
diameter 4.5 mm (see [13])
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We recall that an estimate of the terminal velocity depending on Poisson’s ratio
is offered by [10] where it is shown to be about v® =0.52¢c, for v=1/3; it is

also shown there that above the terminal velocity, the crack extension force for
the tensile planar crack decreases rapidly towards zero. Figure 6 tells us that

in the velocity range V, €[0.3, 0.54]non-planar crack configurations (similar

to that observed in Figure 7) exist with a much larger value of the crack
extension force. Hence, the starter planar crack transforms itself into a non-
planar configuration to maintain its motion.

VI - CONCLUSION

In the present study, non-planar cracks of finite extension in the x1 and xz
directions and infinite along xs, inside an infinitely extended elastic medium,
subjected to mixed mode I+1I+lI1l loading, have been investigated. The

loadings o5,, os, and o, are applied along the x2, x1 and x3 directions,

respectively. The front of the crack is planar in x2x3 and travels at a constant
velocity v along the xq - direction whilst its faces remain stress free. The crack
front has an average elevation h = h(x1) from Ox1xs and fluctuates weakly about
that position in the form &= &1, x3) (1). The crack is represented by a
continuous distribution of 3 types J (J=I, 1l and 111) of infinitesimal dislocation
having the shape of the crack front. The associated Burgers vectors
b, =(0,b,0), b, =(b,0,0) and b, =(0,0,b) are directed along the applied
loadings, tension and shears directions, respectively. Adopting the method of
Fourier series [8, 9] (Section 2.1), we give explicit expression of the elastic
fields (displacement and stress) of the dislocations J (Sections 3.1 to 3.3). Then,
distribution functions D; of straight dislocation arrays corresponding to a
planar crack o, inclined by angle o with respect to Oxixz are calculated
(Section 3.4). Adopting these Dy, we propose explicit expressions of the crack-
tip stresses (Section 3.5) and crack extension force per unit length of the crack
front (Section 3.6) for the general form f (1). The analysis is then applied to a
simple special non-planar crack with a segmented front (Section 4). This type
of crack is given on Figure 3c, d; the average surface is plane 7o (Figure 3a) ;
its front is segmented, at the average elevation h(x1) from Oxixs in the x2x3
located at xi, in the form (45). We distinguish two types of segmentation
characterized by angles ¢a and ¢g of the segments with respect to xz direction.
We show first that for this type of special cracks, configurations exist for which
values <G>, averaged over the length of the crack front, are larger than those
corresponding to the planar crack travelling in Oxuxs (Figure 4) in similar
velocity intervals. Then, two types of segmentation are investigated under
dominant mode | loading : (1) Strong segmentation of the crack front
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(@, =d =70°), Figure 5. We show that a steady motion sets in at the velocity

v® =0.55¢, for an inclination #=54°. (2) Weak segmentation, flat average
fracture surface with isolated strong kinks (¢a=0.1°, ¢g= 88°). A steady motion
is also evidenced at the velocity v =0.37c, when @ =35°. The latter configuration
(Figure 6) explains crack branching observed in the fracture of glass.
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APPENDIX

The various quantities involve in the stresses at the tip of the crack (41) and
crack extension force G (44), Section 3, are given in the following. For terms
with the superscript & in (41), similar relations as in (28) between stress and

displacement are used here (J=1, Il and I11) :
GO = ‘2’ ([6.@—1) +1(5, +6,)] 05 +[8,(L-v) + (S, +8,)]05)*
1%
+[8,A-v) +v (S, +8,)]0F),

06" 2u G aes
= ([é‘ll(l—V)'FV(é‘ +§3)] 1,21 +[é‘|2(1 V)+V(5 +53)] 2,22

ox, 1-2v

+[8,(@0-v)+v(5, +5,)]a% ), i=1,2:and 3 ;

(J)§ _/J< (J)§+U(J)§)

067 10x, = p(AGf +00)), 1% ] (A1)
For J=I, Il and IlI, we listed below the various quantities associated to the
displacements in (A.1).

ForJ=1:

SO0 _ HD 2+(1-2c8)V 2Py
ll P|[1+ p2P|2] Pt[1+ pZPtZ] !

G000 _ Zﬂbpﬁ 1 1 5000 _ ub(l-2¢2)
o2 v | P[l+p°P?] P[L+p°P?]) % P[1+p?P?]’
t P | pH R pH

7V,
06" Jox, =0, i=1,2and 3;

&0 = 2ubp[ R By 0610 /oy =0
21 1+ pZF)IQ Pt[l_l_ p2PtZ] ! 21 2 !
5'103)(0) =0, 55',%)(0) lox,=0, j=1land2 (A.2)

0'Y° =0, i=1,2and3;

qie = pa[1-p’P’] _ (L-v)c[1- p°R?] )0%4(c,X,) ) o’

1,21 2P[1+ 2P2 2 _ 2p212 2 — 21 2!
[1+p° AT (1-2v)R[1+p°R7] X3 2%

G = b (V[5+3p*R’*1-2[3+ p°R’]
V. 2R[1+ p*P?F
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+2(1 V)CZP[3+ p°P?] )&’ ‘fEaH %
1-2v)[1+ p*R*T? 22 ox2
qe _bE =D (20-v)c?R _(1-2)R, 82520() o
3,23 ~2 2p2 2p2 - 73,23 2’
a'A 1+ p°R 1+ p°P 0%,
e b -1 2(-v)cIR  (1-2v)R 55 ~m 08 G¢ =0
u3,2 ~2 2 2 _u32 ) 3,22 ’
a'A 1+ p°P 1+ p*P? ) ox, 0%,
<z _ D 20-v)clR Py 0C _s0 98 e _q.
u23 - 212 212 _u23 ' u223 O’
’ A-2v)[1+p°R°] REA+p°R])ox, ° oOx '
~(eE < __bp 2(1-v)c?R[3+ p*R’]
u12 _O’ u122 - 2272
’ ‘ (1-2v)[1+ p°R7]
PRI+ PR TS _ o 0%
[1+p°PF Jox2 2 oxd’
dé —o g = bp [ 4@-v)c'R[3+ p*(1-37)]
21 ’ u2,21 ~2 2p212
AV, (1-2v)[1+ p°R7]
_6—5\7t2+p2PtZ[2—7 ’] 64‘: §
Pt[1+ pZPtZ]Z ax - aXZ !

[

qis = bp PP B 2(1-v)ciP & _am %5 0¢ 1E — -
- ~2 2p2 2p2 13 ! 123 — Y
1+ p°R° (1-2v)[1+ p°R7]) X, 0%,

Ghe _ b(c;2 -Dp( @1-2v)R 2(1 v)c? R 85 0 8§ GE — 0 (A3)
3 7V 1+ p?P? 1+ p°P? )ox, Hai ox,
For J=II:
&0 _ ,pr 2PtP2% n PI[(C*_Z _2)P|2 _C;z]
ll 2 1+ pZPZ 1+ p2P|2 !
~2 2 2p2 |’ '
7rvt 1+pP 1+pPt 7[1+ p°R7]
06\ [ox, =0, i=1,2and3;
G0 _ Zﬂb R P PO P (A4)
21 2 1+ pZPIZ Pt[1+ p2Pt2] ! 21 2
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The other stresses and their derivatives of order zero with respect to ¢
corresponding to the straight dislocation are zero. We have

04* =0, i=1,2and3;

qne — bp ( pxR[-p*R’] _ 21-v)c!R[1- p’R*] | 0°£(c, x,) _gm >’
1,21 ~2 2p212 2p272 2 —FL21 2!
22| L+ PR -2+ R ) oX o

qme __bp [2(1—V)C5P,3[3+ p?R?]

22 a0 (1-2v)[i+ pPRPP
_PiRB+ pZRZ]]a% _gm 9%
=U; % '
[1+p°R°? ) ox; g
~(I)¢ bp (1_2V)(1_C;2)P2%Pt 2(1_‘/)(1_03)':13 8295 ) azf.
Uso3” === 202 + 252 7 = U
v, 1+ p°P 1+ p°R OX; OX;
aMi_g  gme__D 2(1-v)c'RIL- p°R] %RI(IL-2v)c.” -2(1-v)]
1,2 ' 1,22 271_\7t2 (1—2V)[1+ p2P|2]2 1+ pZPtZ
_ P:R[L-p*R] )% —am oL
[+ pRT Joxg " og
i _g gme__ P 21-v)cRIL-p*R’]  Pill-p*R1 0% _ .y 0%
u2,1 - 'u2,21 - ~2 2p2712 2p2712 2 _u2,21 27
2\ (-20)L+ pPRT R+ PR o ok
~(NE _ b Pzie B 2(1_V)C3P| a_écz A(u)a_g ~(NE _A.
ulS =2 2p2 2p2 —u13 ' 1,23 _0’
TR\ p R s R o, o
e bp (PR 20-v)CIR® 85 _an O e _q.
u2,3  ~2 212 212 _u2,3 ' u2,23 _0’
v 1+ p°R° (1-2v)[1+ p°R7] ) ox, 0%,
~(Ié b (1_2V)(C*_2 —1)P2f 2(1_V)(1_C*2)P| oS _ Al o0& e AL
u3,1 ) 22 - 22 _=u3,1 _'u3,21 _O'
a R+ p°R] 1+p°R X, 28
qne _ bp (-2 -DPIR_20-V)A-cIRY ) 8¢ _ Ly 02
2 a0 1+ p?P? 1+ p?P? x, ot ox
05y =0 (A5)
For J=1II:
- bpP,
GO _ _ HOPR ’ 86O J oy —0:
13 Zﬂﬂlé(t)[l‘l' pzptz] 13 2
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GO HDR
27 [+ P°R’]

06" [ox, =0 (A.6)

All the other similar quantities associated with the stresses, of zero order with
respect to &, are zero. We have

gime b (2(-2v)(c” _1)_\7t2 _4(1—‘/)(1_03) 6_5500")8_5
w1 RI+p°RY] RlL+p°R?] T

27V,
Ug..z.)gzb(cf—l)[z(l—v)cfe_(1—2v)FzJ 0¢ _ qam 8§

27 | 1+ pRE 1+ pR? Jox, Haz X, |
aio- 2L 0o gm0 gni_g =1, 2and3:
27 R+ PP O, 0
Goms _ bp [2(1_2‘/)((3:2 _1)_\75]3 _4(1_‘/)(1_(3*2)'3 ég ) (9§
Y2 20 1+ p?P? 1+ p?P? X, e ox,
o <o;
e _ b(c.* -1)p( (1-2v)R, _ 2(1-v)ciR _‘f Gom & qime —g-
21 7[\7t2 1+ pZRZ 1+ pZF)IZ aX 21 6X3 221 1

U(m): _ b(c*_z _1) 2(1_V)CEP| _ (1_2V)R azf EO("') 82_95 U( 1é -0
1+p’P*  1+pP? JoxX  *F o’ 23 '

2,23 ~2
Qi g e @[2(of—1){(1—2v)a 2(1—v)c3P.}
31 !

A
- Toxl @ |1+ p?PE 1+ pPR?

t
_1-pR jazg’ o 0%
3,21
2Pt[1+ pZPtZ]Z a
e —g g = 2(c.?-1)| 2(1-v)cZP _(-2v)R
3,2 1 322 27[ \72 1+ p2P2 1+ p2P2
t | t
1-p’R’ ja £ _gan O¢.

2P[1+ p’P’T 32 w2
<()E _ bp ([2(1-2v)(c.*-1) -V IR _4(1_‘/)(1_03)}3 0°¢ _aam o0&
u123 2p2 2p2 2 _u1,23 2!
27V 1+ p°P, 1+ p°R OX3 0X,
0 =0 (A7)
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