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ABSTRACT 
 

An analysis is made of cracks at the non-planar interface of bi-elastic materials. We 
consider large cracks, having travelled macroscopic distances, in large materials. 
Locally, the crack front ξ can be seen perpendicular to the propagation direction x1 of 
the crack. A model is thus analysed in which the non-planar crack fluctuates around 
an average plane Ox1x3 perpendicular to the direction x2 of the applied tension. Its front 
ξ = ξ (x1, x3) spreads in planes x2x3 and runs indefinitely in the direction x3. Its length 
is finite and goes from x1 = - a to a. We assume general loading, mixed mode I + II + 

III (tension 22
a  and shears, 12

a  and 23
a , applied externally at infinity in the directions 

x2, x1 and x3, respectively). Induced (normal and shear) stresses, which originate from 
the Poisson effect (acting perpendicularly to the x2 - direction of the applied tension) 
in the x1 and x3 directions, are considered. The treatment represents the crack by a 
continuous distribution consisting of three families J (J = I, II, III) of dislocations with 

infinitesimal Burgers vectors Ib


= (0, b, 0), IIb


= (b, 0, 0) and IIIb


= (0, 0, b), 

respectively. Elastic fields of the dislocations are first given. Then, distribution 
functions DJ of straight dislocations, corresponding to plane interface cracks, are 
given. The expressions found do not invoke oscillatory singularities at the tip of the 
crack; the singularities are those obtained for cracking in a completely homogeneous 
medium. Adopting these expressions, we could give approximate expressions of 
crack-tip stresses and crack extension force G for non-planar interface crack with front 
ξ. Formulas for spatial average <G> of G are provided for special non-planar cracks 
with segmented and sinusoidal fronts. We compared this extension force G of the 
crack with that obtained with elastic fields containing oscillatory singularities at the 
tip of the crack; it is the planar crack which is best documented in mode I loading. A 
remarkable agreement has been found when neglecting Poisson effect. 
 

Keywords : linear elasticity, interface sinusoidal dislocations, Galerkin 
vector, three-dimensional biharmonic functions, singular 
integral equations, fracture mechanics. 
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RÉSUMÉ 
 

Fissure d'interface non plane sous sollicitation extérieure 
arbitraire III. Dislocation, contrainte en tête de fissure et force d’extension 
de fissure 
 

Une analyse est faite de fissures situées à l’interface non plane de deux solides 
élastiques. Nous considérons des fissures de grandes tailles, ayant parcouru de 
larges distances, dans des matériaux de grandes dimensions. Localement, le 
front de fissure ξ peut être vu perpendiculaire à la direction de propagation x1 
de la fissure. On analyse donc un modèle où la fissure non plane fluctue autour 
d’un plan moyen Ox1x3 perpendiculaire à la direction x2 de la tension appliquée

22
a . Son front ξ = ξ (x1, x3) s’étale dans les plans x2x3 et coure indéfiniment 

dans la direction x3. Sa longueur est finie et va de x1= -a à a. Nous considérons 

une sollicitation générale, mode mixte I+ II+ III (tension 22
a  et cisaillements 

12
a  et 23

a  appliqués extérieurement à l’infini dans les directions x2, x1 et x3, 

respectivement). Sont prises en compte les contraintes induites (normales et de 
cisaillement) par l’effet Poisson agissant perpendiculairement à la direction x2 
de la tension appliquée et dans les directions x1 et x3. Le traitement représente 
la fissure par une distribution continue constituée de trois familles J (J= I, II, 

III) de dislocations de vecteurs de Burgers infinitésimaux Ib


= (0, b, 0), IIb


= 

(b, 0, 0) et IIIb


= (0, 0, b), respectivement. Des expressions de champs élastiques 

des dislocations sont d’abord données.  Ensuite, on fournit des expressions de 
fonctions de distribution DJ de dislocations J droites correspondant à des 
fissures d’interface planes. Les expressions trouvées n’invoquent pas de 
singularités oscillatoires à l’extrémité de la fissure ; les singularités sont celles 
obtenues pour une fissuration dans un milieu totalement homogène. Nous 
proposons dans ces conditions des expressions de contraintes en tête de fissure 
et force d’extension G de fissure (par unité de longueur du front de fissure), 
pour une fissure non plane de front ξ. Des formules pour une moyenne spatiale 
<G> de G sont fournies pour des fissures non planes spéciales dont les fronts 
sont segmentés et sinusoïdales. Dans le cas d’une fissure d’interface plane 
sollicitée en tension, la force d’extension de la fissure est en accord remarquable 
avec celle proposée dans la littérature en négligeant l’effet Poisson. 
 
Mots-clés : élasticité linéaire, dislocations sinusoïdales d'interface, Vecteur de 

Galerkin, fonctions biharmoniques à trois dimensions, équation 
intégrale singulière, mécanique de la rupture. 
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I - INTRODUCTION 
 

We consider two elastic solids R1 and R2 (νm and µm, m=1 and 2, being their 
Poisson’s ratio and shear modulus, respectively) firmly welded along a non-
planar interface R of arbitrary shape. Our goal is to provide crack-tip stress and 
crack extension force expressions for a crack propagating along R. For large 
specimens and cracks, we study the following model (Figure 1) in a Cartesian 
axis system xi: the crack along the x1 - axis (direction of fracture propagation) 
extends from x1 = - a to a; its shape in the x2x3 planes can be developed in the 
form of a series of Fourier 
 

 3 3sin cosn n n n n
n n

x x A                                                                  (1) 

 
where n is a positive integer; ξn, δn and κn are real numbers that depend on 
position 

1x  along the crack length. The media (m = 1 and 2) are assumed to be 

infinitely large and the crack front extends indefinitely in the x3 - direction 
(Figure 1). 
 

 
 

Figure 1 : Illustration of a crack front in two elastic solids (1) and (2) welded 
along a non-planar wavy surface that contains an interface crack. 

The crack fronts lie in 32 xx planes in the form ξ (1); in this 

geometry, the system is subjected to mixed mode I+II+III loading 

with the applied tension in the 2x direction. The average fracture 

surface (dashed) is shown perpendicular to that direction 
 
Under arbitrary applied loadings, our method of analysis consists in 
representing the crack by a continuous distribution of dislocations. The stress 
field induced by the crack is equivalent to that produced by the dislocations. 



13  Rev. Ivoir. Sci. Technol., 32 (2018)  10 - 47 

P.N.B. ANONGBA 

The idea that a crack under load is equivalent to a continuous distribution of 
dislocations of infinitesimal Burgers vectors goes back to Friedel [1, 2], Bilby 
et al. [3], Bilby and Eshelby [4], to quote only some earlier papers. It is required 
to determine the dislocation distribution functions at equilibrium under the 
combined action of the applied stresses and the mutual interaction of the 
dislocations. From the stress field of a dislocation and by superposition, one 
obtains the stresses in the surrounding medium produced by the crack and the 
applied forces. The crack dislocations are virtual entities representing 
mathematically a crack under load as opposed to the physical dislocations 
produced by the plastic deformation of the materials as observed by 
transmission electron microscopy (see for example [5, 6]). It is customary to 
deal with crack dislocations the Burgers vectors of which are attached to the 
crack, more precisely, perpendicular (opening of the crack faces) and parallel 
(sliding and tearing) to the crack plane.  
 

However, another fixed crack dislocation geometry provides the identical 
expressions for the crack-tip stress and crack extension force [7 - 9]; the 
Burgers vectors of the dislocations are directed along the applied loading 
directions whatever the crack plane orientation. In the following, the crack is 
represented by three dislocation families (I, II et III) whose common shape ξ (1) is 

perpendicular to x1 with Burgers vectors (0, ,0)Ib b


, ( ,0,0)IIb b


and 

(0,0, )IIIb b


, parallel to the directions of the applied tension 22
a  and shears 12

a

and 23
a , respectively. This crack model and method of analysis have been used in 

the case of an infinitely extended isotropic medium [7 to 14]. The aim of this study 
is to extend the analysis to non-planar interfacial cracking of bi-materials; interface 
plane cracks have been the subject of a recent study [15, 16] to which we shall return 
in Section 5 to discuss the types of singularity (oscillatory and non-oscillatory) of the 
elastic fields at the tips of cracks, obtained by theoretical analyses.  
 

In parts I [17] and II [18] of this study, elastic field expressions (displacement 
and stress) of sinusoidal interface dislocations (Figure 2) perpendicular to x1, 

of Burgers vectors Ib


, IIb


 and IIIb


, were given; the fields corresponding to 

dislocations of form ξ (1) follow from these by superposition. It emerges from 
these studies that continuity of the elastic fields (displacement and stress) when 
crossing the interface between media (1) and (2) is not systematic. This is 
because there are linear relationships between some elastic field components 
with proportionality coefficients that depend on the elastic constants; when two 
components are concerned by such relations, the continuity of one at the 
passage of the interface can cause the discontinuity of the other. In this part III, 
we shall provide expressions for crack-tip stresses and crack extension force 
(per unit length of the crack front) for a non-planar crack system (Figure 1), 
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subjected to general loading, under the requirement that the stresses due to 
crack dislocations (involved in the crack analysis) be continuous at the crossing 
of the interface. In what follows, in Section 2, we present the methodology for 
determining the elastic fields of dislocations and crack analysis. In Section 3 
are listed expressions of dislocation elastic fields, distribution functions of 
interface crack dislocations, crack-tip stresses and crack extension force. 
Special interface cracks are detailed in Section 4. Sections 5 and 6 are devoted 
to the discussion and conclusion, respectively. 
 

 
 

Figure 2 : Two elastic mediums (1) and (2) welded along a non-planar 
sinusoidal surface and containing an interface sinusoidal 

dislocation at the origin. The dislocation lies in the 32 xOx

plane and runs indefinitely in the 3x direction 

 
 
II - METHODOLOGY 
 

II-1. Elastic fields of crack dislocations 
 

The three types J (J= I, II and III) of crack dislocation considered have equal 

shape ξ (1) in the Ox2x3-plane at the origin, Burgers vectors (0, ,0)Ib b


, 

( ,0,0)IIb b


and (0,0, )IIIb b


, and run indefinitely in the x3-direction. Types 

I and II are of edge character on average and type III screw. The elastic fields 

(displacement ( )( )J mu


 and stress ( )( )( ) J m ) in the bi-material (media m=1 and 2) 

may be deduced from those (sinusoidal dislocations, Figure 2) with simple 
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form 3sinn n nA x   the expressions of which have been described previously 

[17 to 20]. For sinusoidal dislocations, the elastic fields are (to linear terms in 
amplitude ξn) : 
 

( ) ( )( )( ) ( )(0)( ) nJ A mJ m J mu u u 
  

 
( ) ( )( )( ) ( )(0)( )( ) ( ) ( ) nJ A mJ m J m    . 

 

Here ( )(0)( )J mu


 and ( )(0)( )( ) J m  are of zero order; they correspond to the fields of 

interface straight dislocation (parallel to x3) at the origin on Ox1x3 planar 

interface with Burgers vector Jb


;  ( ) ( )nJ A mu


 and ( ) ( )( ) nJ A m  are oscillating parts 

proportional to An or its spatial derivative 3/nA x  . When the dislocations 

exhibit shape ξ (1), the elastic fields take the form  
 

( )( ) ( )(0)( ) ( )( )J m J m J mu u u 
  

 
( )( ) ( )(0)( ) ( )( )( ) ( ) ( )J m J m J m

    ;  
( ) ( )( )( ) nJ A mJ m

n

u u 
 

 

( ) ( )( )( )( ) ( ) nJ A mJ m

n
  .                                                                                   (2) 

 
Here, An is that defined in (1). The solution methodology has been detailed            
[17 to 20]. Because both displacement and stress have similar decompositions, 
we just write for the stress below; the description is equally valid for the 
displacement.  
 

( )(0)( ) ( )(0)( ) ( )(0)( )( ) ( ) ( )J m J m J m W     
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )n n nJ A m J A m J A m W        ;   
( )(0)( ) ( )(0)( ) ( )(0)( )

up to

( ) ( )J m W J m J m V
l l

l a e

  


   

( ) ( ) ( ) ( ) ( ) ( )

up to

( ) ( )n n nJ A m W J A m J A m V
l l

l a e

  


  .                                                           (3) 

 
The subscript l may take values a up to e (minimum two, a and b; maximum 

five, a to e) depending on the dislocation J. Expressions with   ( ( )(0)( )( ) J m 

+ ( ) ( )( ) nJ A m   ( )( )( ) J m  ) represent the fields of a sinusoidal dislocation with 

Burgers vector Jb


 in isotropic infinite medium (m) [7, 13, 21]. Those with          

W ( ( )(0)( )( ) J m W + ( ) ( )( ) nJ A m W  ( )( )( ) J m W ) satisfy the equations of equilibrium 
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and are constructed in such a way that the elastic fields of the interface 
sinusoidal dislocation are continuous at the crossing of the interface and tend 
to those due to the sinusoidal dislocation in an infinite medium far from the 

dislocation and interface. ( )( )( ) J m W is linear combination of fields with V [17 

to 20] (i.e. ( )(0)( )( ) J m V
l and ( ) ( )( ) nJ A m V

l ) that we refer to as “partial elastic 

fields”. They are obtained with the help of Galerkin vectors with three-

dimensional biharmonic functions. The proportionality coefficients ( )(0)( )J m
l  

and ( ) ( )nJ A m
l  are real numbers that are determined by the requirement that the 

elastic fields of the interface dislocations (that is to say 
( )(0)( )( ) J m and

( ) ( )( ) nJ A m ) 

are continuous across the interface; we have considered the corresponding 
equations for spatial positions P(x1, x2= 0, x3) on the average fracture plane 
only. When these elastic fields are bounded, we have required their linear terms 
proportional to x1 to be constant with m= 1 and 2. When the elastic fields contain 

terms with singularities (of the types Dirac delta 1( )x , 11/ x , 1ln( )x …), the 

coefficient of each singularity is set constant with m. In this way, we get many 
coefficients denoted  
 

( )(0) ( )(0) ( )(0)( )( ) ( , , )J J J m
j j l m me m e      
( ) ( ) ( ) ( )( ) ( , , )n n nJ A J A J A m
j j l m me m e                                                                       (4) 

 

that depend on ( )(0)( )J m
l , ( ) ( )nJ A m

l  and the elastic constants m  shear modulus 

and m Poisson’s ratio. The subscript j may take values from minimum three 

(j= 1 to 3) up to maximum thirteen (j= 1 to 13). We mention that certain 
( )(0) ( )J
je m  and ( ) ( )nJ A

je m (in limited numbers) will not be constant with m 

because they are proportional to others imposed constant with m. In the present 
study, the components of dislocation stress fields that contribute a non-zero 
value to the crack extension force or are involved in the crack dislocation 
distribution functions will be imposed constant with m. These are stresses that 

contain singularities of the types 1( )x and 11/ x . A general approach is to 

impose on all terms with singularities in the elastic fields (displacement and 
stress) to be constant with m at the crossing of the interface. There are several 

ways to find suitable values for ( )(0)( )J m
l and ( ) ( )nJ A m

l  that make most ( )(0) ( )J
je m  

and ( ) ( )nJ A
je m constant with m. We can build a system of independent linear 

equations with as many equations as unknowns ( )(0)( )J m
l and ( ) ( )nJ A m

l that can 

be solved by the classical method with determinant, as performed in [20]. There 
is another method that allows one to choose the elastic fields one wants 
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imperatively continuous when crossing the interface. First, by direct 

inspection, linear combinations between the ( )(0) ( )J
je m  or ( ) ( )nJ A

je m  are sought; 

then we impose, in progressive manner in number, to some of them to be 
continuous when crossing the interface. We thus succeed in constructing 

expressions of  ( )(0)( )J m
l and ( ) ( )nJ A m

l  which ensure an optimum continuity of the 

elastic fields at the interface (see [18], for example). Frequently, at different stages 
of this construction procedure, it is required that shear modules and Poisson’s 
ratios of media (1) and (2) be different; hence, the elastic field expressions found 

in the present study are valid under the conditions 1 2   and 1 2  . 

 
II-2. Crack analysis  
 

The crack in Figure 1 is assumed to be filled continuously over the interval 
x1= - a to a with three families J (J= I, II and III) of dislocations with shape ξ 

(1) in x2x3- planes and Burgers vectors Jb


 ( (0, ,0)Ib b


, ( ,0,0)IIb b


and 

(0,0, )IIIb b


). It is understood in our crack analysis that n , n  and n  

(introduced in (1)) are position dependent along 1x  in the dislocation 

distributions. The surrounded media (m= 1 and 2) are taken infinite, isotropic, 

elastic and subjected to uniform remote applied loadings, tension a
22  and 

shears a
12  and a

23  , at infinity. In addition, we shall consider induced normal 

and shear stresses originating from the Poisson effect that acts perpendicularly 
to the tension x2- direction.  The first task is to determine the dislocation 
distribution functions DJ at equilibrium. DJ (x1) gives the number of 
dislocations of family J in a small interval dx1 about x1 as DJ (x1) dx1. We 
generally arrive at a system of singular integral equations involving these 
functions; when the distribution functions of the dislocations have been found, 
we can obtain by integration the relative displacement of the faces of the crack, 
the crack-tip stress and the crack extension force. The surfing point on the 
interface is PR (x1, ξ, x3). To find the equilibrium dislocation distributions, we 
may ask for zero total force on the crack faces; this gives 
 

( ) ( ) ( )
12 1 11 3 13

( ) ( ) ( )
22 1 12 3 23

( ) ( ) ( )
23 1 13 3 33

/ / 0

/ / 0

/ / 0

m m m

m m m

m m m

x x

x x

x x

    

    

    

       


      
       

.                                                                (5) 

 
( )m
ij  stands for the total stress at any point ),,( 321 xxx  in the surrounding media 

(m= 1 and 2) and is linked to JD . In (5), we are concerned with the points of 
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the crack faces only. We write ( )m
ij as 

 
( ) ( ) ( )( ) ( )( ) ( )( )m A m I m II m III m
ij ij ij ij ij        .                                                          (6) 

 

We define ( )A m
ij  and ( )( )J m

ij  successively below. ( ( )A m ) includes the 

externally applied stresses and induced normal and shear stresses due to the 
Poisson effect; 
  

22 12 12

( )
12 12 22 23 23

23 23 22

0

( )

0

a a a
m

A m a a a a a

a a a
m

   

     

   

  
 

   
   

.                                                     (7) 

 

12
a  and 23

a  are internal shearing stresses transmitted in the media by the 

interface as the result of the existence of internal uniform Poisson stresses                      

( 1 22
a  ) and ( 2 22

a  ) in the x1 and x3 directions in media (1) and (2), respectively. 

For spatial position PR (x1, ξ, x3) on the interface, they read [15, 16] 
 

12 1
a x    

23 3
a x   ; 

1 2
22

1 2

as s

sa E E

   
 

 
  

 
.                                                                                   (8) 

 

The coefficient /s s sa  is a characteristic of the interface, Em (m= 1 and 2) is 

Young’s modulus; we may view s  as a shear modulus about the interface, s a 

constant in the crack analysis (about 0.5) and sa  a slab of material at PR embracing 

the interface (measured in the x2 - direction of the applied tension) that suffers the 

magnitude of the shearing stress under consideration. ( )( )J m
ij has the form 

 

( )( ) ( )( ) ' ' '
1 2 3 1 1 2 3 1 1( , , ) ( , , ) ( )

a
J m J m

ij ij J
a

x x x x x x x D x dx 


   ;                                       (9) 

 
( )( )J m
ij  is the stress field produced by a dislocation of family J located at the 

origin O. In its general form, (5) requires a numerical resolution. Only simple 
forms of ξ (special cracks) are tractable. For the planar interface crack, the 
crack dislocations are straight parallel to x3; analytical solutions have been 
obtained recently [15, 16] under modes of applied loading I and I+II based on 
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dislocation stresses taken from [22]. The dislocation distribution functions DI and DII 
display an oscillatory singularity at the tip of the crack. When the crack is in an 
infinitely extended homogeneous medium, we have given approximate solutions DI 
and DIII under mixed mode I+III loading when ξ= ξ (x3) depends on x3 only [13]. 
Analytical DJ values for a planar crack tilted around x3 by angle θ0 with respect to 
Ox1x3 in homogeneous medium under mixed mode I+II+III are also reported (see [7, 
9] for example). In the present problem of a non-planar interface crack in a bi-material, 
we can fortunately give approximate expressions of the crack-tip stress and crack 
extension force with ξ given by (1), taking for DJ, dislocation distributions of planar 
straight dislocation arrangements (see Section 3 below). Figure 3 is a schematic 
representation of simple special cracks captured by the modelling. The cracks extend 
in the x1- direction, from x1= - a to a, and must be considered to run indefinitely in the 
x3- direction. The crack shape in planes perpendicular to x1 is described by ξ                       
(see Figure 3 c and d). The average fracture plane is Ox1x3. When ξ= 0, the crack 
dislocations are straight parallel to x3 and distributed over Ox1x3- interface plane.  
 

 

 
 

Figure 3 : Simple special cracks. (a) Planar interface crack with a straight front 
parallel to x3 extending from x1= - a to a. (b) Wavy crack (fluctuating 
about Ox1x3) in the form of a corrugated sheet with a sinusoidal front 

independent of x1. The average plane is illustrated. (c) Non-planar crack 
fluctuating about Ox1x3 and consisting of planar facets; its fronts at x1= ± 

a lie in x2x3- planes. At x1= a, the crack front is characterized by 
inclination angles ϕA and ϕB (see (d)) at positions A and B located on 

Ox1x3. (d) Sketch of the crack front in (c) with B taken as origin. In this 
geometry (from (a) to (c)), the general loading of the crack systems 

corresponds to uniform applied 22
a , 12

a  and 23
a at infinity in the x2,  x1 

and x3 directions, respectively 
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III - RESULTS 
 

III-1. Displacement and stress fields due to interface dislocation of edge I 
average character  

 

We consider an interface dislocation with Burgers vector (0, ,0)Ib b


lying 

indefinitely in the x3- direction and spreading in the x2x3- plane at the origin in 
Fourier series (1). The elastic fields take the form (2). We get at spatial position 

(x1, x2, x3) ( 2 0x  , 2 2 2
1 2r x x  , 2 2 2sgn( ) /x x x ):  
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)1(2/ mmm bC   , 4/)( 1122 CCiQc   , other elastic fields are zero 

and constant terms are omitted. 
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 are taken from [7, 13].  
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Here, the notation (...)Inv  means the value obtained from the expression into the 

bracket (…) by inverting the elastic constants. The various parameters ( )
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m
aa , 
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( )
1

m
da , ( )

2
m
da and ( )mb  are defined in [20] (see relation (35) there). 

( ) ( )
23 1 3( ,0, )nI A m x x  is constant with m=1 and 2; it is involved in the crack 

analysis. Restricting ourselves to terms with 11/ x  only, we obtain (to linear 

terms in An or its spatial x3-derivative) 
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 1 2 2 1( ) / (1 ) (1 )c bb Q Q         , 2 1( ) / 4bQ i C C  .  

 
III-2. Displacement and stress fields due to interface dislocation of edge II 

average character  
 

The interface dislocation, with Burgers vector ( ,0,0)IIb b


, lies in the x3- 

direction and spreads in the Ox2x3- plane in the form of a Fourier series (1). We 
obtain :  
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A has the following definition: 0)( 2 xA  when 02 x  and 1)( 2 xA when 

02 x . The only stress component with a singularity 11/ x  on the Ox1x3- plane 

is ( )(0)( )
12

II m . Dirac delta function 1( )x  appears in  ( )(0)( )II m
ii , i= 1 to 3 and the 

relative volume variation ( )(0)( )( / ) II mV V .  We have 
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Expressions (14) correspond to the elastic fields of a straight interface 

dislocation (parallel to x3) with a Burgers vector ( ,0,0)IIb b


. [18] gives 

similar expressions for the same dislocation. In both cases, the relative 
variation of volume is non-zero and continuous at the crossing of the interface. 

What changes is that in [18], ( )(0)( )
22

II m  is discontinuous and ( )(0)( )
2

II mu continuous 

across the interface, while in the present work, ( )(0)( )
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II m  is continuous and 
( )(0)( )
2

II mu  discontinuous. In both studies, however, there is an optimum number of 

continuous elastic fields across the interface. For the oscillating parts of the elastic 

fields, we have the followings: 
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 and 
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 are taken from [7]; 
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Associated ( )
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nII Ae  , appearing below in the expressions of the crack-tip stress 

and crack extension force, is given in [18] (see relation (46) there).  
 
III-3. Displacement and stress fields due to interface dislocation of screw 

average character  
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Associated other elastic field components are zero; / 2m mD b  .  
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( ) ( )nIII A mu 
 and ( ) ( )( ) nIII A m   are taken from [7, 13].  
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Here ij  is the Kronecker delta, 2 1/   ,  2/)1()(
1 b

mm
c iQs  , /r c bQ Q Q . 
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III-4. Planar dislocation distributions 
 

It is assumed here that the dislocations are straight parallel to the x3- direction 
(ξ= 0). We thus have a planar interface crack of finite extension, with straight 
fronts running indefinitely along x3 (Figure 3a). The crack is subjected to 
mixed mode I+II+III with loadings applied at infinity. The condition (5) for 
the crack faces to be free from tractions becomes (making use of stress 
expressions from Sections 3.1 to 3.3):  
 

' '
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1 1
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
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

.                                (22) 

 
We arrive at a system of three integral equations with Cauchy-type kernels with 
unknowns DJ. The Cauchy principal values of the integrals will be taken. The 
solution of the third equation with DIII is well known [4] and is given below for 
zero dislocation content after unloading. Following [15, 16], we can manage 
the two other equations to obtain  
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e e
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2 4

( )(0) ( )(0)
3 6

8
1

II I
c c

A I II

e Q

e e


    .                                                                           (23) 

 

We observe that introducing the values for ( )(0)8I
c cQ  and ( )(0)

3
Ie (10) on one 

hand, ( )(0)
4

IIe  (15) and ( )(0)
6

IIe  (16) on the other, from the dislocation stress fields 

(Sections 3.1 and 3.2), we have obtained the surprising value one to 2
A  

independent of the elastic constants. We temporary modify our notation and 
write (23) as  
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s i
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e e

  



  
  

 
 

, 

     A i  .                                                                                                       (24) 

 
The integral equation in (24) takes the form of “Example 43” (page 158) in 
[23]; by a convincing operational approach, it is shown there that the solution 
in (24) can be written as  
 

1 2

2

( ) ( )
( )

2 1A

s s
g s

s

 







                                                                                         (25) 

 
where 1  and 2 are solutions of the pair of Cauchy type integral equations 

 
1

1 2 1 2

1

( )
( ) ( ) ( )nA

n n n n n

t
s dt f s A B

t s


    




    
  (n=1 and 2);               (26) 

 
( )g s  satisfies the additional requirement  

 
1 1

2
1 1

1 1 ( )
( ) ln

1 1

t f t
g t dt dt

t t
 

 
 

  
  ;                                                                      (27) 

 

A and B are arbitrary constants. Solutions for (26), making use of the Plemelj 
formula [23, 24], are  
 

1( ) ( ) / 2s f s   
*

2 0( ) ( )s c f s  ;                                                                                                 (28) 

 

*
0c  is an arbitrary constant. From (25), we have ** 2

0( ) ( ) / 2 1g s c f s i s  , and 

the constant **
0c may be given a value by using (27). We can identify the 

distribution function 1( )IID x  of the dislocation family II to the singularity term 

in g(s) because bounded terms will be negligible sufficiently closer to the crack 
tips. Then, we integrate to obtain the associated DI value in a similar way as 
shown in [15, 16]. We gather our results in the following form:  



  Rev. Ivoir. Sci. Technol., 32 (2018)  10 - 47 28 

P.N.B. ANONGBA 

     22 1
1 ( )(0) 2 2

3 1

( )
a

I I

x
D x

e a x







 

     12 1
1 ( )(0)* 2 2

6 1

( )
a

II II

x
D x

e a x







 

     23 23 1
1 ( )(0) 2 2

3 1

( )
a a

III III

x
D x

e a x

 







;                                                                                (29) 

     23 23 3

1
0

2

a
a a

a

dx
a

 


  ,      ( )(0)* ( )(0)
6 6 0 01 2II IIe e a   , 

     
 

2 1 1 2
0

2 1 1 2

(1 ) (1 )

(1 2 ) (1 2 )

   


    

  


  
,     1 2

0

1 2

s s

sa E E

   


 
  

 
. 

 

The consequence of setting 23 0a   is that the shearing stress 23
a  plays no role 

in the theory. The corresponding relative displacements J of the faces of the 

crack in the x2 (J=I), x1 (J=II) and x3 (J=III) directions are  
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III–5. Stresses about the crack-tip  
 

Ahead of the crack-tip at spatial position 1 1 2 3( , , )RP x a s x x   , 10 s a 

, the total stress ( )ij RP (6) is identified to the following formula 

 

( ) ( )( ) ' ' '
1 2 3 1 1 2 3 1 1

to

( , , ) ( , , ) ( )
a

m J m
ij ij J

a aJ I III

s x x a s x x x D x dx


 


    , a a  .      (31) 

 
This stress expression means that only those dislocations located about the 

crack front in 1x interval ],[ aaa  will contribute significantly to the 

stress at 1 1x a s   ahead of the crack tip as s tends to zero; any other 
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contribution will be negligible for a sufficiently small value of s1. Only 
dominant terms with singularities in the dislocation stress fields may 
contribute. Because PR is outside the crack, stress terms with the Dirac delta 

function contribute nothing. Only dislocation stress terms with 11/ x  contribute 

and provide well-defined values to the crack extension force. Hence, we restrict 
ourselves to these singularities only in (31) and take the MacLaurin series 

expansion of ( )( )J m
ij  up to terms of first order with respect to x2 (taken small).  

Under such conditions, the involved integrals are of the type 
' ' '
1 1 1 1( ) / ( )JD x a s x dx  which is calculated approximately by taking for DJ the 

straight edge and screw dislocation distributions (29) corresponding to a planar 
crack. We obtain  
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.          (32) 

 

Again s1, x2 and x3 are arbitrary; 1 1s x a a    ( 1 0s  ) and x2 is small. 
0

22
a

IK a  , 0
12
a

IIK a  and 0
23
a

IIIK a   .  

 
III–6. Crack extension force 
 

Our definition of the crack extension force is taken from [4]. A crack of length 
2a is considered at equilibrium under load. Then, this crack grows almost 
statically, over a short distance, from one of its ends (say x1 = a) while the other 
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end remains fixed. A work associated with a newly created surface element Δs 
is then calculated, which is the product of the elastic forces on that element 
(just before the displacement of the crack front) by the relative displacement of 
the faces of the newly created crack through Δs. This energy is then divided by 
Δs; it is the limit G taken by the ratio of this energy divided by Δs when the 
latter tends to zero which is (by definition) the crack extension force per unit 
length of the crack front at the point P0 where Δs is located (Δs tends to zero 
while keeping a finite dimension along the crack front is appropriate in the case 
of rigid crack front displacement). We followed the calculation procedure of G 
[4] in the extension to non-planar cracking [7, 10 to 13, 18]. 
     Consider a planar interface crack in the Ox1x3- plane, extending from x1= - 
a to a, with straight fronts parallel to x3. Under pure modes J of applied loading 

only (J= I, II and III), the crack extension forces pure
0
J
sG at  1 2 3, 0,x a x x   read 
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 To the same planar crack under general loading (mixed mode I+II+III) 

corresponds the crack extension force 0sG  given by  
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     Under general loading of a non-planar crack (Figure 1) with crack front ξ 

(1), we obtain the reduced crack extension force 0( )G P ,  0 3, ,P a x , as  
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In (35) above, 0' 0
12 /II IM K K , 0 0

13 /III IM K K  and defined is 23 23 12/a aM   . 

Next, we describe special cracks with numerical applications using 
epoxy(1)/glass(2) bi-material.  
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IV - SPECIAL INTERFACE CRACKS  
 

IV-1. Planar crack with a straight front  
 

The simple case corresponds to a planar crack of length 2a in the Ox1x3- plane, 
extending from x1= -a to a, with a straight front parallel to x3. When the crack 
is in a totally homogeneous isotropic medium (m), the crack extension forces 

( )
0
J mG under pure modes J of applied loading only (J= I, II and III) read  

 

      2 2 2( ) 0 0 0
0 / (1 )

4
J m

JI I JII II JIII III m

m

b
G K K K

C
   


    .                                (36) 

 

Hence, with pure
0
J
sG (33), we have  

 

pure ( )
0 0 ( )(0) ( )(0) ( )(0)

3 6 3

11 1
/J J m m

s m JI JII JIIII II III
G G C

e e e


  
 

   
 

.                               (37) 

 
For numerical application throughout, we take media epoxy/glass as system 
(1)/(2). The parameters taken from [25] are: E1= 2.03 GPa, ν1= 0.37; E2= 68.95 

GPa, ν2= 0.20; 2 (1 )i i iE    , / 10sa a  , 1 2( ) / 2s    , 0.5s  [15]. 

We have  
 

pure (1)
0 0/ 0.5 4.6 0.5J J

s JI JII JIIIG G                                                              (38) 
pure (2)

0 0/ 15.1 140 20J J
s JI JII JIIIG G      .                                                     (39) 

 
Under such conditions, further extension of the crack initially located on the 
interface would be in the epoxy (outside the interface), except for pure mode 
II. Again, with the same interface planar crack (as defined above) but now 

under general loading (mixed mode I+II+III), the crack extension force 0sG is 

given by (34). Defining the normalized crack extension force ( )
0

m
sG as  

 

 ( ) ( ) ( ) ( )
0 0 0 0 0/m I m II m III m

s sG G G G G   , 

 
we have 
 

( )(0) ( )(0) 2 ( )(0) ( )(0) 2
3 6 12 3 3 13( )

0 ( )(0) 2 2
3 12 13

1 ( / ) ( / )

1 / (1 )

I II I III
mm

s I
m

C e e M e e M
G

e m M 

   
    

 ;                                 (40) 
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0 0
12 12 22/ /a a

II Im K K   , 0' 0
12 12 0 0/ / (1 2 )II IM K K m a    .  

 
( )
0

m
sG is displayed in Figure 4 for epoxy(1) / glass(2) bi-material. Pure mode I 

loading is achieved when both 12m  and 13M are equal to zero. Pure modes II 

and III are obtained when 12m  and 13M tend to infinity, respectively. It is 

concluded that the value of the crack extension force is smaller along the 
interface as compared to its values in the homogeneous medium (1).  
 

 

 
 

Figure 4 : Normalized crack extension force ( )
0

m
sG  (40) (planar crack under 

mixed mode I+II+III loading including Poisson effects) as a function 

of applied shear/tension ratios 12 12 22/a am    and 

13 23 22 13/a am M    for (a) m=1 epoxy and (b) m=2 glass (see text) 

 
IV–2. Non-planar crack with a segmented front 
 
The considered crack has a front that consists of straight segments. It fluctuates 

around the Ox1x3- plane and 3( )x  is independent of x1 (Figure 3c and d).  We 

describe  below taking locally B as origin as in Figure 3d.   is then odd and 

 )2( BA  periodical with respect to 3x  where A  and B (Figure 3d) are the 

projected length along 3x  of planar facets at Aand B  respectively.   is given by : 
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3tan xB  ,                     2/|| 3 Bx   

   )(tan 3   xA ,      ]2/,2/[3 ABBx   .                                         (41) 

 
We assume general loading (mixed mode I+II+III), and next consider 

successively the reduced crack extension force 0( )G P  (35), now denoted svG , 

express the spatial average svG   defined as 
2

3
0

(1/ 2 )sv svG G dx


    , and 

ultimately the condition for an extremum of svG   . svG  on a period reads: 

for 3 / 2Bx  , 

 
( )(0) ( )(0)

( ) ( )2 2 ( )(0)3 3
12 13 3 51 9( )(0) ( )(0)

123 6 3

cos
1 4 n n

I I
III A I AIIIB

s II III

e e
G M M e e e

e e


 
        

  

         

2 2 2

( ) ( ) ( )
( )(0) 2 2 ( )(0) 213 9 8 6
5 12 13 3( )(0) ( )(0) ( )(0) ( )(0)

3 3 6 3

4
tan tan

n n nI A II A III A
I I

B BIII I II III

M e e e
e M M e

e e e e
 

 
         

; 

for  3 / 2, / 2B B Ax     , 

( )(0) ( )(0)
( ) ( )2 2 ( )(0)3 3

12 13 3 51 9( )(0) ( )(0)
123 6 3

cos
1 4 n n

I I
III A I AIIIA

s II III

e e
G M M e e e

e e


 
        



2 2 2

( ) ( ) ( )
( )(0) 2 2 ( )(0) 213 9 8 6
5 12 13 3( )(0) ( )(0) ( )(0) ( )(0)

3 3 6 3

4
tan tan

n n nI A II A III A
I I

A AIII I II III

M e e e
e M M e

e e e e
 

 
         

.   (42) 

 

For given 12M  , 13M  and crack profile ( , )A B  , (42) provides the reduced crack 

extension force at an arbitrary spatial position 0 3( , , )P a x  on the segmented 

crack front. sG 
  takes constant values on facets at A and B and does not depend 

on media numeration m, except for a value m  in ( )(0)
5

Ie (10); hence, it is almost 

unchanged by inverting the elastic constants. The average sG    may be 

written as  
 

( ) ( )( )(0)
123 0 3 51 9

123

1
4 n nIII A I AIII

sG v e e e

       
  

      2 2 2

( ) ( ) ( )
( )(0) 2 2 ( )(0)13 9 8 6
5 1 12 13 3 2( )(0) ( )(0) ( )(0) ( )(0)

3 3 6 3

4n n nI A II A III A
I I

III I II III

M e e e
e v M M e v

e e e e

 
         

;            (43) 
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        2 2
0 1/ ( ) / 1 / 1A B A B B Av p p p p p p     , 

       2 2
1 / ( ) 1/ 1 1/ 1A B A B B Av p p p p p p     , 

       2 2
2 / ( ) / 1 / 1A B A B A A B Bv p p p p p p p p     .  

 
Here AAp tan , BBp tan . We restrict ourselves to the condition for an 

extremum for sG    with respect to A  by cancelling /s AG      . We 

have  
 

( ) ( )' ( )(0)
123 0 3 51 9

123

/
/ 4 n nIII A I AIIIA A

s A

p
G v e e e




            
  

       2 2 2

( ) ( ) ( )
( )(0) ' 2 2 ( )(0) '13 9 8 6
5 1 12 13 3 2( )(0) ( )(0) ( )(0) ( )(0)

3 3 6 3

4n n nI A II A III A
I I

III I II III

M e e e
e v M M e v

e e e e

 
         

;         (44) 

       ' 1 2 2 2 3/2
0 / ( ) ( ) 1/ 1 1/ 1 / (1 )B A B A B B A A Av p p p p p p p p p         

 
, 

       ' 1 2 2 2 2 3/2
1 / ( ) ( ) 1/ 1 1/ 1 / (1 )B A B B A B B A A Av p p p p p p p p p p         

 
, 

       ' 1 2 2 2 3/2
2 / ( ) ( ) / 1 / 1 / (1 )B A B B A B A A B B A Av p p p p p p p p p p p p         

 
 

 

/ 0s AG        leads to finding the roots of a polynomial of order 2 in 13M

; this gives  
 

     * * *
13 ( ) / 2M b a    ;                                                                            (45) 

     
2* * * *4b a c   , 

      ( )* ( )(0) ( )(0) 2 ( )(0) ' '
3 6 3 0 6 2( ) 4 nIII AI II IIIa e e e e   , 

      
2 ( ) ( )* ( )(0) ( )(0) ( )(0) ( )(0) ( )(0) '

3 3 6 3 5 51 9 14 n nIII A I AI III II III Ib e e e e e e e      , 

      
2* ( )(0) ( )(0) ( )(0) ( )(0) ( )(0) 2 '

3 6 3 6 3 12 0
I II III II Ic e e e e e M    

                           2 2 2( ) ( )( )(0) ( )(0) ( )(0) 2 '
3 6 9 3 8 12 2

n nI A II AIII II Ie e e e e M   . 

 
The numerical application is for the bi-material, epoxy (1) / glass (2). We recall 

that / 10sa a  , 13 23 22/a aM   , 12 12 / 22M m  and 12 12 22/a am   .  For 12M  

lower than certain value (not determined but, say 0.5 approximately), sG  
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(43) increases with A  and B  from values close to one to values as large as 

60, Figure 5. No extremum is present. For larger 12M , maximums are present 

at relatively small 13M , Figure 6 a and b. Negative values correspond to 

forbidden motion of the crack. The behaviour at larger 13M  is presented on 

Figure 6c; extremum as given by (45) could be minimum there. Values                        

( 13M , A ) (45) at fixed B and 12M , corresponding to extremums on the curves 

sG   ( A ) are displayed on Figure 7.  

 

 

 
 

Figure 5 : Surfaces sG   ( , )A B  (43) with associated contours for a non-

planar interface crack with segmented fronts in bi-material epoxy / 

glass: (a) 12 0.001M   and 13 1M  ; (b) 12 0.5M   and 

13 0.001M  . ϕA and ϕB are in degrees 
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Figure 6 : Surfaces sG   ( , )A B  (43) for a non-planar interface crack 

with segmented fronts in bi-material epoxy / glass with 12 1M  : (a)

13 0.3M  ; (b) 13 0.6M   and (c) 13 1M  . ϕA and ϕB are in degrees 

 

 
 

Figure 7 : Surface 13M ( , )A B  (45) with associated contours for a non-planar 

interface crack with segmented fronts in bi-material epoxy / glass 

with 12 1M  . ϕA and ϕB are in degrees 
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IV–3. Non-planar crack with a sinusoidal front 
 

Here, the crack has a sinusoidal front 3( )x   in x2x3- plane that is 

independent of x1 (Figure 3b), in the form 

3 3/ sin sin 2c cx x      

where 3 3 / cx x   and 2 /c c    is the wavelength. In the following, we 

express the reduced crack extension force (35), denoted scG  for the sinusoidal 

crack, the spatial average 3

0

(1/ )
c

sc c scG G dx


    and finally conditions under 

which scG   has extremum. scG  depends on the product tanc c c   ; c , 

the crack-front inclination angle, is the acute angle measured in the plane 
perpendicular to the crack propagation direction between the crack front and 
the average fracture plane. We obtain  
 

 2 ( ) 2 2
1 2 32 2

3

1
1 tan 2 tan sin 2

1 tan cos 2

m
sc s c s c

c

G A A x
x

  
 

  


  

                           ( ) ( ) 3 2
3 3 4 3 3tan cos 2 tan cos 2 sin 2m m

s c s cA x A x x      .     (46) 

We have: 
2 2 2 2 2 2

2 2

( ) ( ) ( )( )(0) ( )(0) ( )(0) ( )(0) 2 ( )(0) ( )(0) 2
9 3 6 8 3 3 12 6 3 6 13

1 ( )(0) ( )(0) ( )(0)
3 3 6 123

4n n nI A II A III AIII II I III I II

s I III II

e e e e e e M e e e M
A

e e e

 
 


; 

2 2

( )
( ) 2
2 ( )(0) ( )(0) ( )(0)

3 3 6 123

( )

2

m
m s

s I III II

num A
A

e e e



, 

 
2 2 ( ) ( ) ( )( ) ( )(0) ( )(0) ( ) ( )

2 6 3 9 1( ) 2 ( 1) 2n nI A I A mm II III m m m
s d d mnum A e e e i a b        

              
2 2 ( ) ( ) ( )2 ( )(0) ( )(0)

12 3 3 8 7 1( 1) 2 2 / (1 2 )n n nII A II A II AI III m
m R mM e e e e V       

                        
2 2

( )
( ) ( )2 ( )(0) ( )(0) 52

13 3 6 6 41

4 (1 )
4 4

(2 )

n

n n

III A
III A III AI II m r

m r m

e Q
M e e e e

Q



 

 
  

 
 

                                           ( ) ( )1 4 ( 1 )
( 1)

1 2
nIII A mm b m m r m

d

m

iQ r Q 



  

  
 

; 

 ( ) ( )( ) ( )(0) ( )(0)13
3 9 5 51 3( )(0)

3 123

4n nI A III Am I III
s III

M
A e e e e

e
   


; 

( ) ( )1
( )( ) 13

4 41( )(0)
3 123

( 1) 4 ( 1 )
4

1 2

n

n

III A mm
III Am d b m m r m

s III
m

M iQ r Q
A e

e

  



   
 

 
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( )

( ) ( ) ( ) ( )52
1

4 (1 )
2 ( 1) (3 2 )

(2 )

n

n

III A
I A m m m mm r

m d d m

m r m

e Q
C i a b

Q


 

 


          

.    (47) 

 

For given 12M , 13M  and crack profile c , (46) gives the reduced crack extension 

force at arbitrary spatial position 0 3 3( , sin , )c cP a x x  on the crack front. We 

observe that 1sA  is unchanged by inverting the elastic constants, as also is ( )
3
m

sA

except in the latter case for a factor m in ( )(0)
5

Ie (10). ( )
2
m

sA  and ( )
4
m

sA , in the forms 

we arrived at, seem not unchanged by inverting the elastic constants. We 

observe that by inverting the elastic constants in (1)
2sA and (1)

4sA , we obtain (2)
2sA

and (2)
4sA , respectively. Hence, one can work with m=1 for half-space (1) in the 

crack extension force expression (46) and invert the elastic constants to obtain 
the results applicable for half-space (2). One expects both expressions to have 

similar magnitudes. In the calculation of scG  , terms with tan c  and 3tan c  

(odd powers) in scG (46) contribute nothing. We get 

 

 2 2
1cos 1 tan (1/ 2,1/ 2;1;sin )sc c s c cG A F      

  

                                            ( ) 2 2
2 tan (3 / 2,1/ 2;2;sin )m

s c cA F                     (48) 

 
where F is Gauss’s hypergeometric function. The condition for extremum of 

scG  ( c ) is / 0sc cG      . We have  

 

 ( )
0 1 1 2 2/ cos m

sc c c s s s s sG u u A u A        ;                                               (49) 

2 2
0 tan (1/ 2,1/ 2;1;sin ) sin 2 (3 / 2,3 / 2;2;sin ) / 4s c c c cu F F      , 

2 2
1 tan (2 tan ) (1/ 2,1/ 2;1;sin )s c c cu F     

                                         2sin 2 tan (3 / 2,3 / 2;2;sin ) / 4c c cF     , 

2 2
2 tan (2 tan ) (3 / 2,1/ 2;2;sin )s c c cu F     

                                         23sin 2 tan (5 / 2,3 / 2;3;sin ) / 8c c cF     . 

 

Given 12M , / 0sc cG       corresponds to finding the roots of a polynomial 

of order 2 in 13M ; this gives  
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 2 2
13 0 12 12

13

1
M num M num

num
   ;                                                               (50) 

2 2
( )

( )( )(0) ( )(0) ( )(0) 52
13 3 6 0 3 1 6 2

4 (1 )
2 8

(2 )

n

n

III A
III AI II III m r

s s s

m r m

e Q
num e e u e u e u

Q



 

  
     

 

                  
( ) ( )1

( ) ( )
6 41

( 1) 4 ( 1 )
4 4

1 2

n

n n

III A mm
III A III A d b m m r m

m

iQ r Q
e e

  



   
      

, 


2 2 ( )( )(0) ( )(0) ( )(0)

0 3 6 0 3 1 92 2 nI AIII II I
s snum e e u e u e   

                                  ( ) ( ) ( ) ( ) ( )
2 9 12 ( 1) 2n nI A I A m m m m

s d d mu e i a b       , 


2 2 ( )( )(0) ( )(0) ( )(0)

12 3 3 0 6 1 82 2 nII AI III II
s snum e e u e u e   

                              ( ) ( ) ( )
2 8 7 1( 1) 2 2 / (1 2 )n n nII A II A II Am

s m R mu e e V      . 

 

Given 12M and 13M , scG  (48) is a function of c  that may contain extremums, 

the associated c values of which are given by (50). Figures 8 and 9 are plots of  

scG   (48) and pairs 13( , )c M (50) (given 12M ) respectively. Gauss’s 

hypergeometric functions are restricted to the nine first terms of their respective 

series. On Figure 8, for each value of 12M , two behaviours of scG   are 

clearly distinguished: at the lowest values of 13M , scG   increases with c , 

from the value 1 ( c =0) to values that can exceed 100 ( 80c   ); at the highest 

values of 13M , scG   decreases with c , from 1 to negative values. Cracks 

that produce negative values cannot propagate. At intermediate values of 13M , 

extremums of scG   are expected, presumably minimums. These extremums 

are given in Figure 9. 
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Figure 8 : scG  (48)(m= 1), for a non planar crack with sinusoidal fronts, 

as a function of 13( , )c M  in  bi-material epoxy(1) / glass(2) with four 

different values of 12M : (a) 12M = 0.001, (b) 0.5, (c) 2 and (d) 4 

 

 
 

Figure 9 : 13M (50) (m= 1) as a function of ( c , 12M ) for non-planar crack 

with sinusoidal fronts in bi- material epoxy / glass 
 
 
V - DISCUSSION 
 

The expressions for the crack dislocation distributions JD  (29), crack tip 

stresses (32) and crack extension force (35) are similar in forms to those for a 

crack in a totally homogeneous medium. We stress that when 2 1A   (23), no 

oscillatory solution of the elastic fields at the tip of the interface crack exists; 
this can be checked directly by introducing a function of the form 

 *
0( ) 1 / 1 ( )

i

n s c s s f s


     in (26). We can write 2
A  as 
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( )(0)( ) ( )(0)( )
2 12 22

2 ( )(0)( ) ( )(0)( )
1 1 12 22

1
1

( ( ))

I m II m

A II m I mx x

 


   
   ,                                                      (51) 

 
independent of media (1) and (2). In the relation (51) above, the dislocation 

stresses are measured on the interface plane at ),0,( 321 xxxP   and identified 

to their singular terms proportional to 11/ x  and 1( )x . In recent studies [15, 

16], we have analysed a planar interface crack under mode I and mixed mode 
I+II loadings (considering shearing stresses on the interface originating from 
Poisson effect) and represented the crack by continuous distributions of straight 
edge dislocations. The dislocation stress fields on the interface (positions

),0,( 321 xxxP  ) were taken from [22]: 

 Edges with ( ,0,0)IIb b


 (Family II) 

 

( )
12 1 3

1

1
( ,0, )II bC
x x

x



 , 

( )
22 1 3 1( ,0, ) ( )II x x b C x    ;  

 

 Edges with (0, ,0)Ib b


 (Family I) 

 
( )
12 1 3 1( ,0, ) ( )I x x b C x   , 

( )
22 1 3

1

1
( ,0, )I bC
x x

x



 .                                                                         (52) 

 
Moreover,  
 

     
)1)(1(

)1(2

)1)(1(

)1(2
2

2

2
2

1

1

















C                                          

with 

     
)1()1(

)1()1(

1221

1221









 ,   11         

 

     
)1()1(

)1()1(

1221

1221









 ,   

2

1

2

1
                                                (53) 

 

where ii  43 . We arrived at a singular integral equation identical to that 
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in (23), but with 2  in place of 2
A . The corresponding dislocation distributions, 

ID and IID , and the stresses carry oscillatory singularities at the tip of the 

cracks. In addition, individual crack extension forces, associated with modes I 
and II, are ill defined, oscillating indefinitely in their limiting values (see (34) 
and (31) in [15, 16]). However, the total energy release rate G is well defined 
and reads in mixed mode I+II: 
 

     
22

2
22 12

(1 4 )
( )

4 2
a aa a

G a
C

  
  

   
        

;                                       (54) 

     




















1

1
ln

2

1
. 

 
The oscillatory crack-tip elastic fields and crack extension force agree with 
previous studies in absence of Poisson effect [26 to 30]. For certain 
combinations of materials, 0  : under such conditions, the oscillatory 

character of the elastic fields at the tip of the interface cracks disappears and 
we recover a behaviour like that described in the present study. We observe 

(52) that the same spatial dependence is given to ( )
22

I  and  ( )
12

II  on the 

interface. We are facing two different interface straight edges I and II. The 
ways these independent dislocations are introduced into the bi-material are 
very different: for the interface climb edge I, one can displace one part of 
material (1) only (say x1>0, x2>0) with respect to (x1<0, x2>0) by b whilst for 
the interface glide edge II, the displacement may be performed along the 
interface (say, x1<0, x2>0) with respect to (x1<0, x2<0) by b. Now, taking each 
dislocation separately in the bi-material, why their stresses must have the 
identical spatial dependencies on the interface, i.e, σ12 (interface glide edge II) 
= σ22 (interface climb edge I)? This behavior is observed when both 
dislocations are in an infinitely extended isotropic medium. For the bi-material, 
this result is not obvious. In a similar way (52), except for a minus sign, why 
σ22 (interface glide edge II) = - σ12 (interface climb edge I)? These are so 
regardless of the types of material involve in the bi-material. This contrasts 

with the results of the present study where ( )(0) ( )(0)
22 1 3 3 1( ,0, ) /I Ix x e x  (10) and  

( )(0) ( )(0)
12 1 3 6 1( ,0, ) /II IIx x e x   (16) are different; a similar remark applies with 
( )(0)
12

I  (10) and ( )(0)
22

II (16). Both studies, [22, 15, 16] and the present one, use 

similar spatial dependences (i.e. 11/ x and 1( )x ) for the stresses but with 

different coefficients. Here the coefficients ( )(0)
3

Ie , ( )(0) 4I
c ciQ   (10), ( )(0)

6
IIe (16) 

and ( )(0)
4

IIe (15) are unchanged by inverting the elastic constants; this ensures 
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continuity of the stresses at the crossing of the interface. In contrast,  (53) 

changes sign on inverting the elastic constants in stress coefficients (52) 
suggesting that associated stresses are discontinuous on the interface. Hence, 

the presence of Dirac delta function 1( )x  on 2 0x   in the interface dislocation 

stress fields and imposed continuity conditions when crossing the interface 

provide the result 2 1A  . 

     We assume the planar crack to be submitted to mixed mode I+II loading 

only, and defined 0 0
ˆ /s sG G G  where 0sG and G are given by (34) and (54), 

respectively. This gives 
 

 

2 ( )(0) ( )(0)
12 3 6

0 2 2( )(0) 2
0 12 03

1 ( / )ˆ
(1 ) ( / 2)1 4

I II

s I

M e ebC
G

a m ae   

 
  

    
;                                (55) 

12 12 22/a am   , 12 12 0 0/ (1 2 )M m a    . Figure 10 is a plot of 0
ˆ

sG ( 12m ) (55). 

0
ˆ

sG  is smaller than 1.  

 

 
 

Figure 10 : 0
ˆ

sG  (55) as a function of 12 12 22/a am   ; mixed mode I+ II 

loading of planar interface crack in bi-material epoxy (1) / glass (2) 
 

Figure 11 displays 0
ˆ

sG (55), neglecting Poisson shearing stresses in x1 

direction. Remarkably, 0
ˆ 0.98sG   under mode I loading only ( 12 0m  ) 

suggesting that both, 0sG and G, predict the same behaviour of the interface 

planar crack in epoxy/glass under mode I loading, without Poisson effect. In 

fact, from (55) and 0
ˆ 0.98sG  , the coefficient ( )(0) 2

3/ ( (1 4 )) 0.98IbC e    is 

close to one, implying that  
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 
( )(0)
3 21 4

I bC
e

 
� .                                                                                       (56) 

 
Other material combination alumina (1) / nickel (2) confirms (56). This 

indicates that (34) (i.e. 0
a
sG ) and (54) are nearly identical under pure mode I 

loading, in absence of Poisson effect. Because for the planar crack, the mode 
that opens the crack faces is what matters for crack extension, the present study 
and those that involve oscillatory singularities of elastic fields at the tip of the 
interface crack, predict the same behaviour of planar interface cracks in real 
materials. The theory (38) predicts that further extension of a crack initially 
located on the planar interface of epoxy/ glass would be in epoxy; this is 
confirmed by the observation [31]. Now, under pure mode II loading of planar 
interface crack in absence of Poisson effect, (55) gives 
 

 0 ( )(0) 2
6

ˆ
1 4

s II

bC
G

e 



(Pure mode II loading).                                            (57) 

 

This cannot be close to one because, as seen from Figure 11 for 12m  large, 
( )(0)
3

Ie  and ( )(0)
6

IIe  have different magnitudes.  

 

 
 

Figure 11 : 0
ˆ

sG  (55) as a function of 12 12 22/a am   , in absence of Poisson 

shearing stresses along x1 on the interface, 12 12M m ; mixed 

mode I+ II loading of planar interface crack in bi-material 
epoxy (1) / glass (2) 
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VI - CONCLUSION 
 

We have studied a model of cracking of a non-plane interface of a bi-elastic 
solid material. The crack is macroscopic in size with an oscillatory form front 
ξ (small in magnitude) located in a plane perpendicular to the x1 direction of 
fracture propagation. We considered general loading (mixed mode I + II + III) 
and induced normal and shearing stresses in the bi-material as the results of the 
contractions due to the Poisson effect in the mediums (1) and (2) acting 
perpendicularly to the x2 direction of the applied tension. The shearing stress

23
a  plays no role in the theory, on average. We represented the crack by a 

continuous distribution made of 3 families J of dislocation having the form ξ. 
Expressions of the elastic fields (displacement and stress) have been given in 
the linear approximation with respect to the oscillation amplitudes associated 
with ξ with the concern that the dislocation stresses involved in the dislocation 
distribution functions DJ at the equilibrium and the crack extension force are 
continuous at the crossing of the interface. The analytical expressions of the DJ 
obtained are those of planar arrangements of straight dislocations 
corresponding to a plane interface crack. They do not contain oscillatory 
singularities at the end of the crack; it is rather the type of singularity (29) 
observed in cracking in a homogeneous medium. Adopting these expressions, 
we could give approximate expressions of crack-tip stresses and crack extension 
force for non-planar interface crack with front ξ (x1 = a, x3). We compared this 
extension force of the crack with that obtained with elastic fields containing 
oscillatory singularities at the tip of the crack; it is the planar crack which is best 
documented in mode I loading. A remarkable agreement has been found. 
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