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ABSTRACT

This paper investigates the mixed mode I+lI+llldosy of a non-planar
crack fluctuating about an average fracture surfic8049) that departs from

O%X3 in an infinitely extended isotropic elastic mediufine crack consists
of a continuous distribution of three types of rstraight dislocation with
infinitesimal Burgers vectors: types 1 and 2 argesdon average and
different in nature (1 responding to the mode diog and 2 to mode II) and
type 3 corresponds to screws on average respotwimgde Il loading. The

dislocations are directed along tf€ direction and spread if?*s ~ planes in

a small oscillating shapé =¢(*1:%) at an average elevatiBR®) . The
displacement and stress fields of three dislocafi@aith arbitrary shape and
average character of edge or screw type, aredivsin. Expressions for the
stress about the crack front and crack extensiaefé per unit length of the
crack front are also given. Formula for a spatiarage <G> of G is
provided for a special crack having a segmentext.fil@rack configurations
for which <G> is larger than the value corresponding to thag gflanar

crack in ©%% under mixed mode I+lI+Ill loading are revealed the
present analysis thus corroborating the occurresfcaon-planar fracture
abundantly observed in real materials.

Keywords: Crack propagation and arrest; Energy release rate;
Dislocations; Crack mechanicsieglegy methods
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RESUME
Fissure non plane sous sollicitation extérieerarbitraire : dislocation,
contrainte en téte de fissure et force d’extensiotie la fissure

Cet article étudie la sollicitation, en mode mikdl+Ill, d’'une fissure non
plane fluctuant autour d’une surface moyeﬁh:eh(xl) qui s’écarte du plan

O%X3 gans un milieu elastique isotrope infiniment éterich fissure est une

rangée continue de trois types de dislocation moied avec des vecteurs de
Burgers infinitésimaux : les types 1 et 2 sontd@as en moyenne de nature
différente (1 obéissant au mode | et 2 au modetli¢ type 3 est constitué de
vis en moyenne obéissant au mode lll. Les dislonatsont orientées dans la

direction®s, ont une forme arbitraire petité = $(*1.%3) ¢talée (A la cote

moyennd®)) dans des plafe*s. Les champs de déplacement et de
contrainte de trois dislocations, avec une formtraire et un caractére
moyen coin ou Vvis, sont d’abord donnés. Des exfesgour la contrainte
au niveau du front de fissure et la force d’extens? de la fissure par unité
de longueur du front de fissure sont également é@snnUne formule d’'une
moyenne spatiale d&, <G> est établie dans le cas particulier d’'une
fissure non plane dont le front est segmenté. Dadigurations de fissure

non planes, pour lesquel$>a une valeur plus élevée que celle

correspondant a une fissure plane dans Ie%’&ih, sont mises en évidence
par la présente étude corroborant ainsi I'occueeahes fissures non planes
abondamment observées dans des matériaux réels.

Mots-clés: Propagation et arrét de la fissure, Force d’extemsde la
fissure, Dislocations, mécaniqudadaupture, Méthodes d’énergies

I - INTRODUCTION

A planar crack in a solid under general loading bananalysed using a
combination of three simple loading modes: teng@npendicular to the
crack (mode I), shear parallel to crack appliegppedicularly to crack front
(mode 1) and shear parallel to crack directed glorack front (mode III).
Explicit expressions for the stress at crack tig erack extension foréeper
unit length of the crack front are available [13{o It is found experimentally
that a certain amount of mode | is required forckranotion initiation.
Although planar fracture under mode | loading istejwell understood,
fracture in real materials generally occurs on a-planar surface. Almost all
experimentalists face non-planar surface when tigettng broken
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specimens. On the scientific side, the conditiammadk geometries, loading
modes ...) under which such cracks develop are ndit wnelerstood. Of
particular interest are methods leading to expoassior the stress about the
crack front and crack extension force. The valaken by these quantities,
when compared with those corresponding to the planack, could then
explain the occurrence of non-planar cracks in megterials.

Consider a fracture specimen with large dimensimnsvhich a Cartesian

system X with originQis attached; apply externally to specimen a

. a. X —_— . . a X
tensiorf22in the *2 " direction and a shear’23along®®: under such
conditions fracture over large distance occurs on nan-planar

surface® = ¢(*1.%2) that fluctuates about an average pl3#&s. Fracture is
said to develop under mixed mode I+l loading. Thectuation® is
generally small ¥/ Mapproximately) but spatial derivatives 6 %¢/%sfor

instance, assuming the crack to propagate along*thelirection) can be
very large leading to a strong roughness of thé&drosurface even under

very small shear by tension rabfgs =92s/ 922(= 6%). These observations
are derived from numerous experiments performeceiundrious different
conditions ([4 to 7], among others). Laboratorycfueie experiments on large
specimens under mixed mode I+lI+lll loading are ammon. However,
based on observations of numerous broken surfacisding mixed modes
I+11 ([8 to 11], for a revue see [5]) and I+l (asferenced above), one can
anticipate the non-planar fracture surface in aispen broken under mixed
mode I+II+1ll loading to have the same featurestlasse observed under
mixed mode I+1ll with the main exception that theeeage fracture plane is

inclined with respect t8%%s. Hence, when applying to specimen a shear

I12in the %t ~ direction, the average fracture surface will defrarn**s.

The study of fracture in mixed mode I+lll o¥llk1ll loading in solids
requires a non-planar crack model that providesresgons for physical
quantities pertinent to discuss crack propagatan.this purpose, a relevant
quantity is the crack extension force per unit tengf the crack front (or
energy release rat€). Since fracture proceeds through the motion of a
macroscopic length of the crack front, it appeagsessary to calculate an
average <G> and look for non-planar crack configurations that

maximize<G>. These configurations may then be confronted with
experiments.

A number of theoretical analyses devoted to nongilaracks have been
published. Works by Gao [12], Xu et. 4l.3], Ball and Larralde [14] and
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Movchan et al [15] consider a non-planar crack that fluctuatesathly

about imposed average fracture plgﬁé%(in our notation) under general
loading (mixed mode I+II+11l loading) except Balh@ Larralde [14] which

restrict themselves to mode | only.‘z and its spatial derivatives

0¢/0% and?¢ /s gre assumed small and linear expressions for tessst
intensity factor (SIF) are given. These resultsehavnarrow application.
Actually these apply to a crack that propagatesrdgdly under mode |
loading but whose front, for various possible reasosuffers a slight
perturbation. Indeed, when a mode Il loading (iitoin to mode 1) is

applied to a planar crack locatedH¢, the subsequent fracture propagation
path departs fronf*s [16, 17] and conditiort small is violated; for applied
mode Il as mentioned earliefz,is generally small bufs/9% measured in

the crack front®® ~direction may be large even undbr small.
In addition to these previous analyses, there £xinstoretical works on non-

planar fracture that imposésmall only, with no restriction on its spatial
derivatives (Lazarus et al. [18], Anongba [19])z&eus et al. [18] consider

an initially planar semi-infinite straight edge cka(crack front in the*s-
direction) that adopts a non-planar configuratiderafracture propagation

over a short distancé (in their notation), the new crack surfa€é ¢(9:Xs)
(in our notation) being and*3dependent. The only small parametePigor

equivalentl)ﬁ‘); there is no restriction on the spatial derivesivof . They
provide stress intensity factors to first ordef and use the usual plane strain
relation to estimate the crack extension fétceTheir approximate formula

forGis written to second order in a parameter, den&id1o by them, that

is a measure of the derivative of the crack-fravist angle with respect to
crack extension. The obtained relation overestimatgual rotation rates by
nearly 3 orders of magnitude [18]. However theyaoi#d a quiet good value
of the global rotation rate by a more complex ciate based on the

maximization of <G> and SIF expressions for three or four point begdin
experiments.

We have previously considered a model of non-planack of finite length
under mode | loading that fluctuates about an ayeemane [20 to 22]; the
crack has a sinusoidal front perpendicular to theection of fracture
propagation and consists of a continuous distaoutdf sinusoidal edge
dislocations [23]. The stress field of a sinusoieddie dislocation leads to the
stress about the crack front and crack extensiorefarhe same approach is
maintained in a recent work [19] extending to mixadde I+l loading; the
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crack front, instead of being simply sinusoidaln cgow be arbitrary. The
crack consists of a continuous distribution of nitely long type 1 and 2
dislocations with edge and screw average characiéms dislocations are

perpendicular to thé ™ direction of fracture propagation, have an arbytrar

periodic small shape‘zz‘z(x?%) (independent oft) spreading in the

%2X3 ™ plane and their portions may be arbitrarily inctingith respect to the

%3~ direction. There is no restriction on the spatiaricatives of

‘t(‘3‘t/‘3)(3and625/ax32 particularly: see Section 5.1 in [19]). Dislocasofi
have an edge average character and respond tolrfuatkng; dislocations 2
have a screw average character and respond to Hodée displacement
and stress fields of two dislocations, with arlsgrahape and average
character of edge or screw type, are given. Expnesdor the stress about
the crack front and crack extension foféger unit length of the crack front
are also given. Formula f6fG >, a spatial average ©f, is provided for one
special crack having a segmented front. Conditionder which<G> s
maximum conform to experimental measurements afkefiant twist angle
versus applied stress.

Our method of analysis [19, 20] can be extendeal straightforward manner
to mixed mode I+1I+lll loading; this is the goal thfe present work that aims
at providing explicit expressions for elastic figldf the crack dislocations,
crack-tip stress and crack extension fé¢ceThis introduces a new type of
sinusoidal edge Il dislocation, responding to mdeading, perpendicular

to the X1 “direction and spreading in th&2X3 ~plane. Our modelling
consider a crack whose surfdcis given by T (*1:X3) =04, %5) +h(X) \yhere
<is a function of*1and*soscillating about the value zero and taking smal

positive and negative valueBdepends ononly, odd (for definiteness) and
taking arbitrary values. The average fracture serfa therefore defined by

the equatiorf2 =h(4)  The crack consists of a continuous distributidn o
three types of dislocation with infinitesimal Burgevectors: types 1 and 2
are edges on average and different in nature (thteomode | loading and 2
for mode Il) and type 3 corresponds to screws ocgrage associated with

mode Il loading. The dislocations are long perpeuidr to the ~ direction;

X = Xy X3 —

the one located at® ~*ispreads in the plane in the form

¢=¢(X.Xs) with an average elevation (with respect ¥2*3) given by

X, =h(x4) Elastic fields of the three types of dislocatiare given in
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Sections 2, 3 and 4; we first express the plagstodion and obtain the
associated displacement field using a method dpedidy Mura [24] as
explained in Section 2.2. In Section 5 our crackdetocand analysis are
presented; explicit expressions for the stress tatbeucrack front and crack

extension forc& are provided. Section 6 deals with special cracisured
by the modelling with a more detailed descriptiond and associated spatial
average valugG > . Concluding remarks are given in Section 7.

I — DISPLACEMENT AND STRESS FIELDS DUE TO A
DISLOCATION OF EDGE | AVERAGE CHARACTER

I1-1. Plastic distortion

We consider a dislocation with Burgers vecfB0 lying indefinitely in

the 8~ direction and spreading in tH&3 ~ plane at the origin in the form of
a Fourier series

f =3 (& sinkyXs + 3, COKpXg) +h=E+h

n : A2

Here handMare real and positive integer respectivefy;a wave number and
¢n and % are amplitudes. We assurheto be small and express the plastic
B (%)

distortion to first order irf(; this gives

Bia(X) =b3(x)H (x, ~h) ~béd(x)3(x, ~h) ®.2

and the other components gi (X) are zero, wher® andH are the Dirac
delta function and the Heaviside step functionpeesively. Here, the first

term is due to a straight edge dislocation displamg*2 = hfrom the origin.
The corresponding displacement can be derived piacimg *2 by X2 ~Nin
the displacement of an edge dislocation at tharo(ig the present geometry,

*&
see [23]). We shall therefore concentrate on tlecerskterm denote@2 . lts
Fourier form may be written as
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B5()=Y i ]2T(ﬂf;”(kl’kziksn)+/3;25”(k11k21k3n))

ko= 0o

x ¢ (i iana) dig i, (2.3)
where
P 7Tl K, 1 © o
B (ko) =t [ o L [ [ et
21T ik (2].[)2 i
x (= bé&,, sink, Xad(%, ) 3(X, — h) Jdx dx, (2.4)
and
p 7l K, 1 o o
ﬁ;zdn (kl, k2, k3 ) =_n e_lki’,nKnX?,dX3 e_l(klxl+k2X2)
n o _”J/.Kn (2]7)2 —-[o—-[o

x(~bd,c05G60(x)A00 ~N)dxdy. (5 5)

K ang K - B and B
1 and "2 are real and‘3n is a natural number:12 and”12 are non zero

— ; ; 2
only when Kn=*1 angd  equal to TEXPCIKMibE, /22T 4ng

i 2 *& o
—exptikn)bdy 12277 respectively. The Fourier form of2X) may be
arranged to read

ﬁ;g X) = —4b 5 Z I I (zne' (ko O —)—Knxg) 4 zne' (lelJrkZ(Xz_h)H("Xa))dk_Ldkz
221"
o (2.6)
where % =% +i¢h and? =% ~1n,

[I-2. Displacement and stress fields

The displacemeni‘m(y‘) (m=1, 2, 3) due to a plastic distortion of the form

F o\ _ 2 (DY alkk Co_
B () =B; (k) €7\ herek = (kikz,ks) has been obtained by Mura [24] to be
U (%) = =iK) Gy Lmic(K) By (K) eik(_ (2.7)

For isotropic material,
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Om(4 + Zlu)kz — kikim(A + 1)
4
H(A +2p)k 2.8)
k? =k +k3 +k3 a0

L(K) =

where
Cuji =A% 0ji + HOGO + 1Oy (2.9)

% being the Kronecker delta ardand # are Lamé constants. According to
9\ — i I\ 7Y (B ik « DY alkk
(27), Um(X) - IklCkl21|-mk(k)/812(k) € if ,312 is given ang(k) € _In the

present case howevéh? is given by (2.6). The linear theory of elasticity
allows for the superposition of solutions, so ttie corresponding solution
may be written as

b
22m)? 4

ufH(x) = - I _[ (‘ik|ICk|21|—mk(‘2')Zneik'y<h

~ik, Gzl (K)Zoe' jdkldkz 2.10)

in  which K'=(ky =kko ko kg ==,n) - K=(kka ke =5n)  gng

*n =04, % =N X3) \with (2.8) and (2.9), we may arrange (2.10) tdre

uf(;()=4ﬂ(1_v)2(£nsm/( Xg + 0, COSK,X3) |(L—2v) = (X0 + (%o — ), 2)
NI
0(xu3p + %) " (2.11)

and

us (X)=- b z 9 (5 SiNk,, X + 3, O %) (% —h)— 9

’ Am-v) 7oK o " (2.12)

where

ioo T '(k1X1+k2(X2_h))d dk, =K
B 2ﬂ£ j k12+k2+K dk, =Kol#o]

, (2.13)
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the subscriptl taking the values 1 or 2 in (2.11); the termHi% is an
2 2 2
operator that acts on the factor with; '~ =X + 02 =) KX jg thenth-

order modified Bessel function usually so denoted gj is the Kronecker
delta. Finally, the total displacement‘at (*1:%2:%) takes the form:

U (%) =u(8,+0,)+ (Xlw(xz-h>6il+x1(x2—h)5isJ
i i 11 I 4]7_(1_'/) ;

9
0X3

>

O01+0+ 03

2 2
Mn(_ a0+ 000
+(<2v R D +5i3JK1[Knr]J
r (2.14)

subscripti= 1, 2 and 3% =¢nSiNKnXs + 0, COSK X5 the term ih lis an
Oh

operator that acts d%; Vis Poisson’s ratioYi is the displacement due to a

straight edge dislocation displaced”py N from the origin:

uOh(X):—b(ZV_l) In(rz)— b
! 8m(Ll-v) 4r(Ll-v) r?
== D KD e sl
T Xo—h ) 4md-v) r

(2.15)

The stress field can be obtained by diffesdimg the displacement. We
find:

0 (%) = 07" (%) +CX1(;(§_m2KnA1(Kn[(5il +3,)+ 23,

L 0631+ 06 ~h)?3p)
2
;

:|KO[Knr] +:-|:2(5i1 +0;2) +4vd;3

2

k2R~ 8) + (%o ~M2(S, 1))+ 0T * 2 h)zd'z)}lq[xnr]}
r

0,,(X) = o (%) + CZKnA{K{—V +‘b(12();24_h)2}Ko[Knr]
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20200 12 200 2
+:{_1+Knx1(rx22 h) +8X1(Xr24 h) }KMHJ

o5(%)=C Kol#nr]

X1512+(X2‘h)5112,( oA, [ Kn(E0)+ (% ~h)?3)))
r n naX3 r

2 25
+[V(5j1+5j2)_2(x15,-1+(rx: h) sz)iKl[Knr]J
,  (2.16)

where subscripts and I take the values (1, 2 and 3) and (1 and 2)

Oh
C=/b/2nA-v) gnq i

respectively, Is the stress due to the straight edge
dislocation displaced b$ = h from the origin:

o0z =c e~ h)(xfr ~(- h))

o= [xf(é.l+5.2>+<x2;h>2<—5.1+35.2>+MBJ
r r

,i=1,2and3. (2.17)
Ohyoy—( -
Note that?i2 (%) =0 (!=1and2).

We indicate here a useful observation. From equosti@.14) and (2.16),
those due to a dislocation with the forfri= ¢nSINKnXs + 0, COSKX3 + N gy

be obtained by removing the symbgl (in (2.14) and (2.16)). Conversely
from the knowledge of the elastic fields due toislodation with the simple

form T =<nSINKnXs +h \ye arrive at those corresponding to a dislocatiith

the more general form (2.1), simply by addiggto the fields and writing
$nSINK X3 + 0, COSK X3 instead of$nSINKnX3 gnd Xn($n COSKLX3 — 3, SINKX3)

instead of(n¢n COSKnXg |

I — DISPLACEMENT AND STRESS FIELDS DUE TO A
DISLOCATION OF EDGE Il AVERAGE CHARACTER

I1I-1. Plastic distortion

We consider a dislocation with Burgers vect§t 00 lying in the
*3~ direction and spreading in th€*3 ™ plane at the origin in the Fourier
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series form (2.1). As indicated at the end of $ecf.2, the elastic fields of
this dislocation can be derived from those due tsinasoidal dislocation

located at the origin with the same Burgers vediimg in the *2*s ~ plane

and defined by*2 =¢$nSiNKnX3(h=0) Figure 1. We first treat this simple
case. Let the sinusoidal dislocation be introducethe medium by sliding

the part of the materigh <0 and X2 > $nSiNknXs by, b=000) 5nq the unit
normal to the surfac&? = $nSiNKnXs (denotedSand hachured oRigure 1),
at an arbitrary poirlt = (%4:¢n SiNKn X3, X3) e equal to

ﬁ=1/¢1+(£n,l(n COsK,%3)? (0, -1, &k, COSK,X3)

pointing to the negativé2-

direction. The plastic distortiof?ij is written by Mura [25] as

B; (%) = -b;no(p(X) (3.1)

where b; and ™ are the component of the Burgers vechor of the
dislocation and? respectively;p(x) is the distance from the position defined
by X to the surfacemeasured along a direction perpendicula®(ic.,
parallel to M) anddis the one—dimensional Dirac delta function, being
unbounded wherX is onS(i.e., #X) =0y and zero otherwise. There are two

non-zero components of the plastic distortion (bing (3.1) and adding the
Heaviside step function):

T b .
B21(X) = 5 0(Xz — & sinkpXg) H(=x)
1+(4zn/(n COSKnXS) (32)
and
Ba1(X) = =&k COSK X3 Br1(X) (3.3)
whereH is the Heaviside step function; we assume the hageSiNcn%so

be small: this assumption is common to the thrgeedyof dislocation
considered in this study. In addition, particulartihe dislocation of edge I

average character, we also considéf ®ssmall. This reduces coefficient

2
[L/1+ (nkn COSKnXs) 11 unity in (3.2); corresponding Fourier forms used
the sequel are
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22
{ 1- fnkz (e—i/(nx3 _eiKnx3)}ei(k1x1+k2x2)dkldk
2 2
(3.4)

X3 +eiKnX3] ei(klxl+k2X2)dk1dk2
(3.5)

and
PN VO A
Bu(®)=orst [ [ e
81° _oo_oo|k1
respectively, wheré<1 and K, are real.
/ ¥z ,
i 7
/ /
// l/
| ~\ I/
b
+&
/ B /
/
,f / X,
| f
f JE
f 1 2K,
/ g1
{ /
/
/
7/
/

Figure 1: A sinusoidal edge Il dislocation lying in th&*s ~ plane at the
origin with a Burgers vector in the™ direction

[1I-2. Displacement and stress fields
With two non zero componen@landlgﬂ, the displacement (2.7) reads
: (3.6)

Un(X) = =i ¢ (lmp +Kolig) Bar € =i p (Kylyng +Kslig) Bap €%

In the present stuo@ﬂlandﬁ?%l, as given by their Fourier forms (3.4) and

20N kX
(3.5), are integrals of expressions of the fgﬁr#() € The linear theory of
elasticity allows for the superposition of soluoso that the displacements

P. N. B. ANONGBA



Rev. lvoir. Sci. Technol., 16 (2010) 11 — 50 23

Un(X) to the present problem are similar integrals aipldicements of the
form'm. We thus obtain at once

Um (Z'L;gz _[ I {(dnl + 5m2)|:|-m2(|20) + tz Lml(lzo)} —Ezn(ei/(nxg +(- 1)1+5m3 e |Knx3)
00 —0 1

2 2 ,
x{kzl-mz(k)*'tz'-ml(k) *hnLa(K)+1 " Lml<k)}} et i,
1 1

(3.7)

where the subscripttakes the values 1, 2 or ks,z(kl’k2) and
k=(kk2.ks =Kn) With (2.8), this becomes

Uy = b J' J’{( - +3 2)|: B 1 Ky kg}_fzn(eikn@_i_( 1)1+5m3e—|/(nx3)

2m? kmkg 17V kg

>{k22 (5ml + 5m2) + Kr% (5ml + 5m3) _ 1 km(k22 + Kﬁ):|} ei(k1X1+kzX2)dk1dk2

—00 —00

k(K +47) 1-v (k& +k5)? =9

kG = ki

2
where *K2 | Further calculations involve the following iddids:

Lo
277‘[0‘[0k1(|<1+k2+/()

'(k1X1+k2X2)dkldk2 = J KO[Knm] dx= 1 (g, X,)

X

1

el (arer) gie di, = K[k r
ZHJ;OJ;OK +k2+K kl 2 0[ nO]

H
o)

K _[ J‘;ei(kle’kﬂﬂdkldkz =k, j KoK/ X2 + 2] dX= roKy[Koho]

Kn
2 124 ,2\2
e o (ki +ky +Ky) %

17T ol (ko) _y
7i J;, J;,( +k2 +K7)? - dade =X olkarol (3.9)

e =x2

2 .
where *X2 and the subscripttakes the values 1 or 2. The terms of

zero order with respect ténin the displacement (3.8) correspond to the
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straight edge dislocation (see [25] for instan@& calculations in (3.8) lead
to the displacement of the sinusoidal dislocatibtha origin with Burgers

vector?00)  The displacement due to a dislocation of edgavierage
character with form (2.1) may then be expressed as:

2
ZP{Z(l V)| -«2 +:X I 0 =)=

A =40 4 K2 xl
u(X)=u +

A (1 2 Kolknr]

#5081 Z(er; ) )Kl[/(nr]}

Uy (%) =" + Z/A{ LTl PR
r

47t (1 V)
+Kn(xr2‘h)(— @+ 2u)+2(X2rh)JK1[K f]}

2

W)= 4y D A{(—H 2)Kolkor]+7 Kl[Knr]}

4”(1 V)% (3.10)
The term iA His an operator that acts buefined in (3.9).

2 _ 2 2 Oh
rF=x+-N"3nd%" is the displacement due to a straight edge
dislocation displaced b2 = N from the origin:

uloh(>”<)=£tan‘l Xohl, b x0e-h)
2 X 4m(l-v) 2

b2v -1) In(r2)+ b (x-h)?

Oh/ gy —
0% ™ ey 2 w0 (3.11)

The stress field associated with (2.1) can be nbthby differentiating the
displacement. We find:

3 2 _ e
015 =075 +C2An A-v)||-k2— 9 +67||| +L);Zh) oy~ A —h)” Ko
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+Knxl(x2_h)(2(2+u)+/(2 X2 8(X2rh)jK1[K f]]

r3
015(X) =C Sk 9 Ala-v)« +ia—2|||’(x X —h)—K”X13K [K.r]
13 - nax3 n K, axg 1) A2 I’2 OoL™n

r

+X1(—|/ 72()‘24‘) JKl[K r]]
I’

O,3(X )——C h)z naa {K”rxlz Ko[Knr]+(2v +X12_(;(§_h)2jK1[Knr]]
n X3

011(X) = J11(X)+CZAn (XZ ))Ko[Knr]

L Ko ,l(r?x4 4(x, —h)%13%2 + (%, —h
r( r21 (X9 )(;(1 (%o ))JKﬂKnr]}

T2(R) = oB(R)+CY A{Kﬁ{- 1-2) +4X12(Xri‘mz}<o[xnr]

20200 _ 2 2/v 2
s [_“Knxl(rxzz QR JKl[Knr]}

55(%) =0§§(X)+CZ%{K§£1—WJK [Kor]
n r

+Kr”(—/(§x12+2'/( ~0e- h)z)JKl[Knr]]

r’ (3.12)

Oh _
9 is the stress due to the straight edge dislocatisplaced by?2 ~ M from
the origin:

or3 (%) = c* ( _:fz_h)z) o (%) =-C (Z_h)(3X1:4+(X2_h)2)

o) =C(X2_h)(xlzrl CRL cv e
, . (3.13)
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oh _ Oh _
Note tha€13 =023 _0.

IV - DISPLACEMENT AND STRESS FIELDS DUE TO A
DISLOCATION OF SCREW AVERAGE CHARACTER

We consider a dislocation with Burgers vectdPO.D) lying in the

%3~ direction and spreading in th&*3 ™ plane at the origin in the Fourier
series form (2.1). The only non-zero componenthef plastic distortion is

written to first order iﬁz:
Bia(X) =b3(x)H (X, =~ h) ~b&d () 3(x, = h) (4.1)

that is identical to (2.2). Here, the first termdae to the straight screw
dislocation displaced b =Nfrom  the origin. The corresponding

displacement can be derived by replacinigy X2 ~Nin the displacement of a
screw dislocation at the origin (see for instar®8). The Fourier form of the

*&
second term is identical to that (2.6)'Bé)2f (Section 2). To get the total
displacement field, we proceed exactly as for tiwodation of edge |
average character (Section 2). The result is

0
Kn¥%Oi3 +(5i1 +5i2)67
3

U (%) =u(X)35 +

A

b
4ml-v) Zn:
KX (%91 + (% —)d5) —20-V)d5 K[k r]j

r 1 (4.2)

x(((1—2v)5.1+Kn5.3)KO[Knr]+

. Oh
subscript=1, 2 and 3“2 is the displacement due to a straight screw
dislocation displaced by = Nfrom the origin:

W (%) = -2 tantf 20
s 2 X
' (4.3)

The stress field can be obtained by diffeedimg the displacement. We
get:
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7 =0x B0, |5 aﬁ[ { xfaiﬁ(xz_h)z%%}Ko[m

3 r

r

+{(_6il+5iz)(xig - (¢ =h)?) —2V3;, _f i3:|K1[Knr]J

- X, —h d Ko X2 2x2
0,(X)=C2—>k, A”[— n~l K(,[,l(nr]{v—z1 }Kl[/(nr]J
r 5 0Xs r r

202 +V00 =13 + @) 06 -0)3,)
r

74(0 =" (x)+zCA“” [K Kolka]

+[—K§(xfa,.l+x1(x2—h)a,-z) v - % - h)),1+2><1(x2 -3, )}Kl[/(nr]}
& . (4.9)

Subscriptsi and I take the values (1, 2 and 3) and (1 and 2) respdct
oh
andJij is the stress due to a straight screw dislocati@placed by

X2 =Nfrom the origin:

o) :éﬁ(xﬁz _(rx22 _h)5|1j

,i=1and 2. (4.5)

Oh /gy — . Oh _
Note that%i (X =0 (i=1 2 and 3) anfh2 =0.
V- ANALYSIS OF THE NON-PLANAR CRACK

V-1. The model

The dislocations with edge | and Il (Sections 2 8peénd screw (Section 4)
average characters are now considered to be comshudistributed over the

interval =2 t0a. The shapd of the dislocations depends dhin the
form

f =&(x,%3) +h(x) = Z(fn (%) sink, (%) %3 + S, (%) COSK, (Xl)x3) +h(x) (5.1)
n 51
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It is understood in our crack analysis t‘ﬁatdn ,Knandh (introduced in (2.1))

are position dependent alofign the dislocation distribution. The medium is
assumed to be infinite, isotropic and elastic angected to uniform applied

. a'a a a'a . . w . . . . .
tension 922 and shear12and?23 at infinity. The dislocation distribution
function Di(*1) (i=1 and 2 for the edges | and Il ah&3 for the screws)
gives the number of dislocations in a small interval 4% apout %

asPi (%)% pisiocations 1, 2 and 3 have a Burgers vedt?9, (0.00)
and (©0.b)
P=(x,f,

respectively and to anyone located™at running point
X3)(f being given by (5.1)) is associated. We are cormckEmith

the problem of finding the equilibrium distributiei of the dislocations
under the combined action of their mutual repulsiand the force exerted on

them b}PgZ,JlaZ and’23. We may ask for zero total force at any p&ioh
each of the infinitesimal dislocations or equaktg 6hown in [19]) ask for the
crack faces to be traction free. The latter coaditis found to be more
convenient, it reads

512 -of /aXla'll —of /6X3513 =0
522 _af /axlalz _af /6X3523 = 0
523_61: /6X1513_af /6X3533=0. (5_2)

% stands for the total stress at any pditit*2:*e) in the medium and is
linked to Di. In (5.2), we are only concerned with the pointsh® crack

. O
faces. We write" as

Jjj = 0j

where

— =0 . =@ , 5@
—o0 +50 + 53

a
" (44, %, %) = oM + [ I (% =%, %, %5) Dy (X )
-2 (n=1,2and 3); (5.4)
(n)
here” (n= 1,2 or 3) is the stress field produced by a daion displaced

by (XZ_h)from the origin with Burgers vectoFO’b’O),(b’o’o) or ©Ob),
(n)a
0’..

LI the applied stress, is equal to zero
Da _ 2)a _ 3)a _
exceppéga - 0-32’ 0-252) - a-fZ anda§3) - 0-33 .
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Figure 2 is a schematic representation of special cracksuocegp by the
modelling. The cracks extend in thé direction from™ = 2to@and must

be considered to run indefinitely in tffe direction. The crack ofigure 2c
Is confined for illustration purpose in a paralf@feed of finite size. The

crack shape in planes perpendicular*is described byg (Figure 2c for
example).

F1 ()] P

&)

x>

Figure 2 : Simple special cracks. (a) Inclined planar cra@(see text). (b)
A non-planar crack (parallel t*3) ashodd function ofa (%2 =Ny (c)

Non-planar crack fluctuating about an average ineli plané®. The crack
consists of planar facets; its fronts &~ *2 lie in *2% ~planes. At® =2,

the crack front is characterized by inclination éem% and % (see (d)) at
points A and B located on the average fracture elgd) Sketch of the crack
front in (c) with B taken as origin. In this geomye(from (a) to (c)) the

a a
general loading of the crack systems correspondmttorm applied’22, 912

a
and 923 at infinity in the*2, X1 and * directions, respectively.
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Although‘z is given as a Fourier series in (5.1), it appeasaageneral
function in expressions for both the stress abloeitctack front (Section 5.3)

and the crack extension forée (Section 5.4). The shaﬁe)f the crack in
planes perpendicular t®is given by botﬁ, through the® ~ dependence of
positive quantitie$, % andn(Equation (5.1)), and functidh™ "0,
Sincef is assumed to be small oscillating function, therage fracture plane
is described correctly by the equatlsm "0 . wherf =9, the crack
dislocations are straight parallel “®and distributed over the
surface®2 =04 specific examples ar€igure 2):
o NC9)=PoX (Po20y gng¢ =0 This corresponds to a planar crack
o (with a straight front parallel td3) rotated around®® by angle
6o =tan™ P from OXXs Figure 2a.
«  N()is an arbitrary function oftand® = 0. The sketch irFigure 2b

corresponds td'odd although this is not mandatory. Actuafhpdd
conforms well to homogeneity of the medium, geometf the

applied loadings and; (5.7) approximations adopted in the present
study.

« hOQ=pox (Po20y gng =¢(Xs)independent oft. The crack
fluctuates about plan&with a front spreading in planes parallel to
X2X3in the forn® . In the example displayed Rigure 2c the crack

consists of planar facets with inclination angféaind® (Figure 2d)
at pointsA andB of the crack front located on the average fracture

plane.
V-2. Dislocation distributions

Assume first that the dislocations are straight alpar to the
X3~ directiont = 9 and"(*1) = PoXgepends linearly oftwith Popositive
constant Figure 2a). We thus have a planar crack of finite extensiwith
straight fronts running indefinitely alorg, rotated (fron‘PXlX3) about the
positive %3 ~direction by =tan™' Py The crack extends frofa= 2 to

aand is subjected to mixed mode I+lI+III with loagmapplied at infinity.
Under such conditions in (5.2) we

haved’ /0% =0h/0% = pg 0f /0% =05/0% =0 3 the associated stresses are
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written at” = (*0:N(*0).%8) a5 (making use of (5.3)-(5.4) and stress expression
in Sections 2 to 4)

(- p)33+ 0+309)3; [ Di09) o

— a
Oii =030, +C;

@+ pg)? —a X~ X
+C, Po( (3+ p§)d + (A= p§)d 2)j DZ(Xl)
@+ pg)? ax =% '

(=Podi1 *+9di2) j D3(X1)
1+pf  axg—%

03 =050, +C,
+C, 1- po) .[(poDl(Xll)"‘Pz(Xi))Xm
L+ pg)*-a X% (5.5)

01, =01,

where the subscriptakes the values 1 and @7H/2711-V)
andC2 ='“b/2”; the traction free boundary condition (5.2) theedmes

a '

D, (x '
O3~ poaf‘2+C1,[71( l.) dx =0
_aXl_Xl

a .
D .
012 +Cy -[aXZ()iv) dx =0
_aMT A
a .
J- D3(Xl) Xm =0

a§3+C2 a X X
- 1~ M
(5.6)

where the Cauchy principal values of the integeatsto be taken. The type
of solution is well known [26]:

ot T5,% ot
Dy(x) = [1_ Po tzj 222 L > (1 Po JDc()l )(%)
O22 ) TC;~]a” — % 0%

_ oy X — R
Dy(x) =22 —L— =D{"(x)
€y a2 - X2
o3 X
D3(xq) = 2 —2—=D§") (%)
ZarTy : (5.7)
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Dél)(i =1, 11 andlll respectively) corresponds to the equilibrium distion
of straight dislocations when the crack is planathie ©%*3 ~plane (Po = 0),
extending from* = "@to@, under pure modé loading. The corresponding
relative displacemefft of the crack faces, in tfe (i=1),%(i=2) and
*3(1=3) directions, are:

A(%) = (L= poota! 05)(05b! 7€) (8% — )2 = (L~ poaledgz)(q()')(xl) '
@) = (O30 7€) (@ - x{)"2 = ") (%)
Po(x) = (0501 7C)(@% X)) "2 = ") (). (5.8

i) . (M
% ("=1, 1l and lll respectively), similarly ago , corresponds to the
relative displacement of the crack faces when thekcis in2%%s under pure

mode loading.Diis unbounded 8t ~*2and the 4 curve vertical at these
end points.
In its general form (5.2) requires a numerigagdolution and this is a

formidable task; only simple forms btre tractable. We have given

a — —
approximate solutions féhandPs (912~ 0. D= 0) when

h=0angd¢ =<(*s) depends ofsonly [19]. Fortunately as it appears below,
we can reasonably give approximate expressiongh@rstress about the

crack front and crack extension force V\fitgiven by (5.1) usingDi (5.7)

when the average fracture surfaBean be approximated by plar® of
Figure 2a.

V-3. Stresses about the crack front

To obtain expressions for the stress about thekchamt, we proceed as
follows. In the neighbourhood of the crack frontdted att =2, any point

P with coordinate§-%2-%3) is characterized b2 close tdsince the fracture
surface is given b{/:hﬂzwith‘tis small. We can thus consider the Taylor

)04 =%,

(n _
series expansion of! %) (5.4) about2 = "(*) to first order with

respect t6%2 ~M; this gives
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o)

0y (x4 = %1, %, %5) = 03" (% =%, N, Xg) + 1 (%o =h) + 0(%; ~h)
%2 (5.9)
where®®2 M5 the complementary part of the series.

Writing % =@+S 0<s<<a % (5 3).(5.4) is given by the following formula:

3 a . ' '
T (% %) =Y [ of™(a+s=X, %, X5) Dy (¥1)dx
la-& (5.10)

with@<<a,  This stress expression means that only thosecdisbns

located about the crack front it “interval la-c, a]will contribute

significantly to the stress dt ~ 2% Sahead of the crack tip agends to zero;
any other contribution will be negligible for a &aiently small value ofs.
We observe that this formula is precise with naceléor any other kind of
additional stress term. Applying the Taylor expansi (5.9), in

(n) ' () =
(Xl Xlah(xl)1x3) and 60' /6X2 (ln which Xq —a+s) appears the

difference 104) - h(Xl)) which we express as follows sinée and X (see
(5.10)) are close to a.
h(x) = h(a) + p(x, =) +0(x; =a) 4ng"(%) =h(a) + PO =) +0(X =) \yhere

p=0N(2)/%. thereford*a) ~h(x) = P04 =X)+004=%)  Fyrthermore in

%i (5.10) we restrict ourselves to singularities ca‘thpe“'_llzonly; this is the
singularity that comes into play in the study oér@r cracks and gives a
well-defined value to the crack extension forceisltsufficient to identify

(n) '
%" 0 the unbounded terms with(@*S™%) in the Taylor expansion (5.9).

Assuming¢(%1:%8) and its spatial derivatives with respectto be bounded
at®® =2 the involved integrals in (5.10) are of the type

IDy () (a+s=%)%" which is calculated approximately taking frthe
straight edge and screw dislocation distributioBs’)( corresponding to a

planar crackowith a straight front parallel td¢ (Figure 2a). We obtain

@ 3] 3
o, =0 +0.7 +0; )
( 1) 1) 1) 1) (5.3))-

_ 1
Uii(l) (S,%2,%3) =(1+p2)3([5i1 + 8, + 2285+ (— Oy +33, + 285) p°1(1+ p?)
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L a1+ 20001360, -G

J2m s
(=01+92-9

2)P [35, + 35 + 285+ (81— 05 + 233) p°1(1+ p°)
@+ p?)°

a 0
—(—5.1+5.2+2(1+v)5.3)p4]g ¢ (a.xg)J( - “ﬂJ K1
X3

2y

5ii(2) (S, X2, %3) =

+;(X2 - h(a))[35|1 +(3+4)3, + 20+ 3V) G5 +(-63 ~ 2B~ )3, +8V3;3) p

2
+(= 31~ W-w)3, - 20-v)d3)p ] E@&)}ﬁ}

A _lp?*-va, +f-2v - (1+2v)p).2 2<1+p)5.3|af K§ 1
JII (SvXZ'XS) (1 l/)(l‘l'p) ( 3)\/7(
795 50.%0) = Pl-2-v) +w7103 +Iv - 2-)P*15;2 3¢ (| oh | KP 1

L+ p*)? 0% 03, 21 [s
_ _[-@-v)p? - (2-v)p19j, + pll+ 2v - A=) P13y, 8& KT 1
2 J J il
O3 (8,%2,%3) = L+ p?)? 6x3rf
e (S LS (S PR L)

[p(5 -(1+v)p )511 (3 v-(B-V)p )5]2]6 J\Kﬁ}
e 1
01%) (S,X2,%3) =(1+F;2)3[1— p? +§(X2 ~h(a))

02 0% K 1
xk—2u—2a+2mp2+a—zopﬂ&;}@rpoafJJ§ﬂ¢g
3

o@=— 1 (1 ptilx,- Ki 1
012 (1+ pz)g(l p + h(a) [1+ 2(13+2V)p +p Fjr(

p2-v-w?) 9 a,x;) i Ki 1

A-v)a+p)2 0% 2rs (5.11)
where subscript and! take the values (1, 2 and 3) and (1 and 2) respdygti
p=oh(a)/dx K

_@3 _
(s, %,%g) =~

0 .
i (=1, Illand Il respectively) is the SIF for the pkmncrack
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in 0% X3 5t the origin under pure motleading;
K =05p/am Kil =0f/amm gngKin = 93:/37 \e stress again that *2

and %2 are arbitrary, =% "8<<a (5>0) gnd*2~N@)is small. The
parametePoin (5.11) originates from a planar cracko(Figure 2a)
hypothetically assumed to approximate the averageacture
surfacg2 =N This  suggests that we could  write
h(4) = Po%y +AN(X) wherehhis an oscillating function Sftaking small
positive and negative values. Taking (5.7) Boresults in coefficients

a a 0y /
(= Po012/922) gnd Ki'/V27B gnly in (5.11), the other factors have no
concern with this approximation.

V-4. Energy considerations

In the following, an expression for the derivati@of the energy of the
system with respect to crack area is derived. Heisves to discuss the
initiation of crack motion. We follow Anongba [120] and the procedure is
adapted from Bilby and Eshelby [26].

Allow the right-hand front of the non-planarack with shape (5.1) (use

Figure 2c to illustrate) to advance (say rigidly for simjtyd from * =2

tod*d&  put apply forces to the freshly formed surfaceprevent relative
displacement; the energy of the system is unalté¥esv allow these forces

to relax to zero so that the crack extends effebtifrom@to@+d . The

work done by these forces corresponds to a deciafadee energy of the
system which we shall estimate (the energy of ystem consists of the
elastic energy of the medium and the energy ofdhding mechanism). The

elemen@Sof the fracture surfac&? = f (4. %) ahead of the crack front, at a
point? = (X% = .%3) " may pe defined by® =S where ¥ is the unit
vector perpendicular #Ppointing to the positive *2 ~ direction. We
8 =1/ 1+ (0 /0xq)? + (3F 10x5)? (~F /0%, 1-0F 10%5)dS , 4y akediSto be

obtain

— 2 2
given aéjS_JlJr(af/axl) + (07 /0%3) dxldx3. The component of the force

acting orflSin the % ~direction isa”dsj (the summation convention on

repeated subscripts applies) WthG are stresses ahead of the shorter crack;

gy ds;au

thus the energy change associated itk /2(here a summation
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is also considered ovet=1, 2 and 3) wherefu" s the difference in
displacement across the lengthened crack, justndeltis tip, in the

% ~direction. When the crack advances frfém?2 to2+d  the energy

decrease associated with a surface element
at+da
As= [ds D\/1+(af 19%;)? + (0f /9x3)? dadxg

a

(®@being small and, when used below, will be let ta@aero) is given as
at+da ]
~E=1[250;dsau"
2 i

the integration being performed with respeclitave stress th&Sis the sum
of the surface elements dStaken at the various

points” = (4% = T.X3) agX only changes from@ tod+®. Let G be a
derivative of the energy of the system with respertcrack area.G
corresponds to the limiting value taken byXE/AS as ®A(as alsds)

decreases to zero. Stressds generally consist of terms that are either

bounded or unbounded &% tends t®; only those stress terms that are
singular may contribute a non-zero value @& the bounded terms all

(i) .
contribute nothing. Using (5.11) and definiﬁgI (8) (i=1,2and 3) as
FaKi +3,KP +a5K ) 1

50)(3) = il

Ver s (5.12

we arrive at

G(R) = alei\rpo -E/As

_ ! [rlog +[ o +[-<let?)
1+ (3f 10, +(0F /9%, (5.13)
where
- 1(1%® 6
GC(]I)= lim [ J' U(')Au(')dle
@-0 @2 3 , 1=1 2.and 3. (5.14)

[eeNe)

Expressions i[‘i],[" o and[ ]are very long and need not be displayed here;
an explicit presentation (5.17) follows. (5.13) egvthe value ofG at an
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arbitrary pointo(@%2 = T.X3) 310ng the front of the non-planar crack with
projected half lengti® along™. The calculation oiﬁu(i)depends on the way
the extension of the right-hand front of the créidm % =2 to a+a js
performed. When&u®” is obtained from a distribution of dislocations
perpendicular to the“-direction, we implicitly assume a rigid crack-fton
displacement. In that casé,u(i) may be obtained from the solution of (5.2)
modified to allow for the fact that the crack exdsrfrom =72 to a+da
instead of from~2 to@. Approximate expressions 1:09’8)(i =1 2 and 3)
correspond to a planar distribution of straighteedgd screw dislocations.
When the crack has the geometryFofure 2a with &0 :O( Po =0y Bilby

@ -
and Eshelby [26] have shown thatG K (1 vi)IE= G,

@ 024, .2 — Al (3 il
Young’'s modulus. The corresponding  dislocation rdistions

areD(”) DM D an)

0 and~° (see (5.7)) with associated relative displacemeits

n (1) 1)
the faces of the crac qﬂé and%() (5.8). In the same approximation and
using the dislocation distributiongi (5.7) corresponding to a planar crack

o (Figure 2a) inclined by %(about axi©€*e) with respect %%, we
arrive at

Gc()l) =G(')'
G(Z)—(l P alZJGO
0% '
@) _ ~1
Gy’ =Go (5.15)
Adopting approximation (5.15) and defining G(R) as
G(Ry) = G(Ry)/(Go +Gop +Gy' ). we obtain (with
M12Ealea;‘z,MmEaB/azz'M23Ea§3/af2)
= S0
G(P0)=.Z Gj (R)
i,j=1 (5.16)
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where
éfl) - 1 — af (a, X3)/6X1 (2(1_ p4)72(1+ pZ)[po (1_ pz)
20+ p?)* | [1+(af 10x, ) + (3f /0, )?

2 9
+p@E+ pz)]Mlz—f(l— p4)M13i+[1—6p2 +p* ~(pot-6p2 + p*)

@-v)My, ,
[1 v+(@- V)M12+M13]

+pB-6p°-p ))Mlz]f J

co- 1 1 [
o=
20+ p*)® [1+(0f /9%, ) + (of /6x3)2

ip(1+p )2-v-wp )M13a [p(5 v -2(+2v)p? + (- 2V)p)
X3

2p@- p*) +2(1- p*)(1- peP)My,

+{u+ 203+ 20) p? + p* - popl5- 20 - 20+ 20) p? + @-20) p

f 0%¢ @-v)My, \
ax3 ll v+ (@1- V)|\/|12+|\/|13J

é‘(l) - 1 of /6x3
T @+ p))? 1+ (o 10% )2 +(0f 10xg)?

( pa+ PZ)M13+[F’_2+V+VP2)

]a‘t 5 w- (1+u)p)L

(1 A-v)p® - (2-v)p* + pop(-2+v +1p° )'\"12 2(1-v)

0°¢ @-v)My, ,
6x3 [1 v+(@1- V)M12+|\/|13J

é‘(z) —_ 1 of /aX]_
1 23 2 2
20+ p%)® 1+ (0f 19%, )% + (of /axg)

(2p(1 p*) +20- p*)d- poP)My,

-2 ps pA)2-v-w )Mlsa +[pls-2v - 20+ 20) p2 + (- 2) p*)

+{u+ 203+ 20) p? + p* - popl5- 20 - 20+ 20) p? + @- 20) p
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5 9°¢ @-v)A-pMyp)
6x3 [1 v+(@1- V)M12+|\/|13J

~o_ 1 1
@ -
2+ p?)° 1+ (af /0%, )? + (F /0xs)

[2(1+ p2)(1+3p?) 20+ p2)(po 1+ 3p?)

2 0
-p- PN+ 2 pAa- 20 - 1 2) PPy O 4 6p2 -
3

+(po-6p% + p*) + pla+ av - 2(3- ) p? - (1- ) p* M,

0%¢ @-v)A- pgM35)
6x3 [1 v+(@L- V)M12+|\/|13J

6(2) —_ 1 of /6X3
T @+ p)? [1+(0f 10% ) + (0f /0xs)?

~(po(v - @2-v)p?) + p+2v - @-2v) p2)My, | 25

((1+ p2)Mys+ [y - @-1)p?

o, 1
oxs | 20-v)

(3—|/—(3—|/) p2)|\/|13

i3 @-v)A- pgM35)
6x3 [1 v+(@L- V)M12+|\/|13J

1 of /9%

GO =_ (
W+ p?)? 1+ (0f 10 )7 + (0f /0xs)°

1

- pd+p )Ml37[p(2—v—vp M3

10& p(5—3|/—(1+|/)p2)
0%, 20L-v)

+l1- @-v)p? - pop(2-v -1p?) - 2-1) p* MMy

25 1
6x3 [1 v+ (@1- V)M12+|\/|13J

1 1

L+ p)MS+|V - (2-v)p*)M
L+ p?)? J1+(af/ax1)2+(af/ax3)2( B [ °

o -

10¢ , [3-v-G-v)p?)
10, 2(L-v)

~(po(v - @2-v) p2) + pl+ 2v - (- 20) p2) MMy
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1
lezsf f}
6x3 [1 v+ (@1- V)|\/|12+|\/|13J

GO 1 of /0% (
20+ p%)% [14+(0F /9%, )7 + (0f /x5)°

4 L+ p?)?[My3 = (P+ Po)M 1My

- p2)2M123£+[2(1+v)(1 p*)My5 - (20+v) po - p)

0%, 1
e J[l v+(- V)M12+M13]

+ pl2+2) +p? ~20-1) p My Myl S
(5.17)
For the planar crack with a straight front ttecrease of the energy of the

system (%), divided by the surface elemefit?®(! runs along the crack
front), is defined as the crack extension force pait edge length of the
crack front (see [26] for example). In the pressidy, we shall refer t&
(5.13) as the crack extension force per unit lergftithe crack front. In
Section 6 we give a more detailed descriptionGofor special cracks as
illustrated inFigure2.

— SPECIAL CRACKS

VI-1. Cracks with a straight front

We consider first the crack Rigure 2b; it extends fronft = "3to@and runs
indefinitely in the®s ~direction. The crack front is straight parallel
0*3(¢=0) and T =N(independent df. We assume the crack to

fluctuate about plané® (Figure 2a) and takeP: (5.7) as the distribution of
the equilibrium crack dislocations. Under suchdibans the reduced crack

extension forcé (5.16)-(5.17) under mixed mode I+I1+1l loading &xkthe
form

1 1-2pyMy,+ (L+ pdMS+MG/(L-V)

G(Ry) =
0 W 1+ M5 +MZ/A-V) ¢ =0h=h()y (6.1)

at point P@%=h@.X%) ot the crack front located %t=2:
p=0h(a)/ox =tand (t5r 6 seeFigure 2b).
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The second crack we present is giveRigure 2a. This is a tilted planar
crack corresponding to the rotation of pl&REsabout by

— L _ _
angle?o =1 (Po) . The crack front is straightC %) and"=Po*1. The
normalized crack extension forée(5.16)-(5.17) then reads

1 1—2p0|\/|12+(1+ pg)Ml22+M123/(1_V)
m 1+M3 +MZ/(1-V) ¢=Ch=Rx)  (6.2)

G(Po) =

at point Fo(@ X2 = Pod.X3) of the crack front located %t~ 2. Figure 3 is a
plot ofG (6.2) as a function ébfor differentMizvalues when
M13:0(mixed mode I+l loading). We expect that for aetl plane crack

o (Figure 2a) to be observable experimentally, it is necesshat Gbe
larger than 1. As we can see frdangure 3, this occurs for sufficiently

IargeMlZand eovalues; the larger trlé/'ﬂ(dominant mode Il loading) the

smaller the & values for which G>1. When Mizjs very large and

M13=0(pure mode Il loading),C(Fo) H1/C0S%increases continually with

from the value 1 '?0 =0); this reveals the importance of mode Il loading

in increasing® . The resultG >lunder certain conditiond{gure 3) agrees
with experiments showing that when a mode Il logdin addition to mode

[) is applied to a planar crack Iocatedol’ﬁx?», the subsequent fracture

propagation path departs frof#*s ([16, 17]; see also [5] for additional
references). Under mixed mode [+111 loading

(M12 =0y G(R) Ucosty (independent d¥'13) decreases continually with
from the value 1 ‘?0 =0); adding mode 11l to mode | loading contributes
nothing to the initiation of? motion.
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Gt

6'0 (degrees)

Figure 3: Normalized crack extension forée(G.Z) versug® for a planar
cracko with a straight front parallel t&°*s (Figure 2a), tilted

— -1
abouf’s by an angle?o =" " Po from O%%s under mixed mode

I+1I loading (Ml3 :0). The curves correspond from bottom to top to
M12=07 1 5 and 3.

VI-2. Cracks with a non-straight front

The last example we shall describe is a non-plareck Eigure2c) with a
segmented frontigure 2d) whose average fracture surface is pl&pélted
about ©*by angléofrom©**s. The crack front att = @runs indefinitely in
the *s ~direction and is located in 2% ~plane. We describé below
taking locallyBas origin as in Figure 2d. ¢ is then odd and
(2A=Aa+s) ~ periodical with respect td® where A and AB( Figure 2d)

are the projected length alorf§ of planar facetAandB respectively.‘zis
given over a wavelength as

& =tanggxs | X3l A /2
= tang, (=g + 1) %UlAg 12, Agl2+A\] 6.3)
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We assume general loading (mixed mode I+I1+IIlyjtev Po = P=t@nf¢q,

simplicity in (5.16)-(5.17) for the reduced cracktension force, now
denotedBV, and express the spatial averé&e>ofGVdefined

- 2} _
<G, >= (1/21) | G,dxg
as 0 . We obtain
~ 1

<G >:(12)2{(1—v)(1+ p2)2l-2pMy, + @+ PIMB +MA/A-V)]g
tp

|- 2v @+ p2)2Myy+ plav +5p2 - (2-3) p MMya, + |- a-v) - @-v) p?)
+ (1) pl3+ 3 - 5-3) p? My, + 1-1)fi- (@+1) p? + A-v) p* M2

1
+2(1+ pP)ML/(1- ")}’2}[1_., +1-v)MS+ M123] (6.4)

where

Vo = ([L/(pa+ pB))( pal[1+ p® + p§ + pg /- 1+ p* + pi)

Vi =(paps /(Pa+ pB))(—1/J1+ p? + p3 +1/.1+ p® + pé]

Vo =(paPs/(Pa+ pB))( Pal+/1+ p? + p; + pg/+ 1+ p® + péj

(6.5)

andPa=1Ngy Pg =tangs  Hepnce <Gv>is  a  function  of
parameter§® Pa: PeiMa2.Mas) \wherf (or%) equals zero, the crack front
is essentially straight parallel to tfe ~direction. The corresponding crack is

similar to planar crack (Figure 2a); under such conditiorfs®v > (6.4) is
identical to (6.2).

We first focus on the effect df'12 (mode Il loading) whefB #0 n absence

of mode 1l M13=0) andP =0, (6.4) becomes under such conditicnév >
increases with12 from the value(Vo ~W2) (Ml2 =O, pure mode | loading)
to(Vo TV2) (M12very large, pure mode Il loading). We note from resgion
(5.11) of the stress about the crack front (WﬂérQ) that under pure mode |

loading the* &v > term¥o originates fronf22and the term
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(*W2) fromP23whereas under pure mode Il fh€ term"ooriginates

from%12and the term'2from913. We have reported dRigure 4<Gy> (6.4)
as a function of% %) for constantt = 7% M13=05ngM12equal to ((a) 0.1,

(b) 0.5, (c) 1 and (d) 2)¢%) regions where= Cv > is larger than 1 grow as

Mizincreases indicating that mode Il loading contmsuto improve the
condition for the motion initiation of a crack wiefonts consist of straight

segments. A similar behaviour asHigure 4 is observed wheM13 7 O, other
conditions remaining unchanged. Whe4 Qit can be noted that a term with

the productMlZN|13 exists in <G‘v>(6.4) indicating a correlated effect
between modes Il and IlI.

Figure 4: Surfaces® Gy >(8.44) with associated contours at constant
% =70 M13=043nd four differentM12: (a) M12=01 5y 0.5, (¢)
1 and (d) 2 (see text)=1/3.

<G, >=v, v, (ME-v)(MB ] (p=0My=0). 6.6)
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Figure 5: Surfaces< G > (¢.4) with associated contours at constant

% =20° M1z =020 four different13: (a) M13=01 (1) 0.5,
(c) 1 and (d) 2 (see text)71/3.

In absence of mode 1M412=0) andP =0, (6.4) becomes% * )

My, 2M&G-v@-v)?
1-v+Mf  A-V)A-V+ME) (p=0My; =0) (6.7)

<6v >=Vp —Vg

This case is considered in some details elsewhE3g fonditions under
WhiCh<GV>(6.7) is maximum are established; these conditiares then
confronted with experimental measurements of cfemht twist angle versus
applied stressM13and found to conjorm to situations where non-planar
cracks are favourably observed [1§](.3v ”(6.7) increases witf13from the
valueMo ~W2) (M13=0pre mode I loading) o * (2/1=V)V2) (Misyery

large, pure mode Il loading); for the latter valtiee term’ooriginates
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from%23and the term @1"VVefrom%ss. We note that the

valuegMo * @/1=V)V2) reached by S > (P =9) under pure mode Il loading

is appreciably larger than the corresponding vdiee" V2) obtained above
under pure mode Il. This reveals (see also bélogures 5 and6) a stronger
effect of mode lll loading (as compared to modesuperimposed over mode
| for improving the conditions for non-planar craciotion.

00
(&)

Figure 6: <Cv > (.24 with similar conditions as iFFigure 5 except

% =107, M1 =02 v =1/33ndMasin (a), (b), (c) and (d) as in
Figureb.

Figure5 displays<Gv > (6.4) as a function of @) for constants = 200,
M12=02and for different values oM13 ((a) 0.1, (b) 0.5, () 1 and (d) 2).
<Gy>is  larger than 1  for  sufficiently  lard&swith

correspondin§5’¢A) area increasing wiMB, Figure 5b to d; under such

conditions* ®v > increases witfa (seeFigure 5¢c andd for instance). Hence
the more the crack front departs locally from tkierage straight line, the larger

the<Cv > This behaviour is amplified when we tdke™ ’T | Figure 6, other
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conditions remaining similar. It thus appears thabde Il loading
superimposed over mode | promotes crack front satahen. This is in full
agreement with experiments ([4 to 7], among others)

VIl - CONCLUDING REMARKS

The method of analysis in the present study candgistusing explicit
expressions of the stress field of dislocationgite an estimated value to the
crack-tip stress and crack extension force. Moexipely, we are dealing
with three types of dislocation with a sinusoidahge (edges | and Il and
screws) because from the expression of the displeseand stress fields of a
sinusoidal dislocation, one can derive that of slodation with the more
general form (2.1) (Section 2.2; [19]). One cantidgish the sinusoidal
edge | dislocation [23]: this is a dislocation Itexh at the origin (Burgers
vector (O,b,O))’ extending indefinitely in the® ~direction, whose shape is
given by an equation of the tyf%e=<¢0SINKoXsgpreading in the
OX2X3_plane; the sinusoidal edge Il and screw dislocatibave the same

characteristics except Burgers vect8r?9 and ©0.b)

X1 and*sdirections, respectively.
The expression of the stress at the crackstihe sum of three terms

(5.11) associated with the three types of dislocat{5.11) is valid undef

small only, the shape cf(fbeing arbitrary, with the meaning that there is no
2 2

restriction on the spatial derivatives é’(a‘(/ 0% and ¢/ 6X3, for instance)

with regard to edges | and screws. Indeed the atisphent and stress fields
of edges | and screws (namely (2.14)(2.16) and)(@4®) are established

from a linear form with respect {d(Z.Z) and (4.1)) of plastic
distortiond®izandfis (note that the exact relation IS
Br2(X) =bd(x)H (X, = 1) = Bi3(X))  Relations (2.2) and (4.1) are valid under
the condition¢ small only, the shape dszeing arbitrary. Use is then made
of formula (5.10) to give an expression to the sstrat the crack tip. No
additional hypothesis dnand its spatial derivatives are introduced indiaati

that the final result (5.11) is valid under cortiti¢ small only. With regard

to edges II, the exact form of the plastic distortis given by (3.2) whereas
we have used the approximate expresdferX) =Po(Xz =&, sink,Xg)H (=)

this means that we assume small the spatial diervaf /0%s, Consequently
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7@
i in (5.11) is valid under the conditiérand its spatial derivative® /9%s

2 2
and 9°¢/9%3 small. When calculating the crack extension fo€5.13) or
~ _ 2 2 . @ —©2 g
G (5.16)-(5.17), the terms witlX2 ~N@)C/X j, T~ (Ti” gng %12

2 2
(5.11) for instance) contribute in terms wif ¢/ G: the factor

2 2
§0°¢10%; is of second order and as so should be discardidregard to
edges Il only (this factor is admissible for theestdislocation types, edges |

and screws). We note that (5.17) for the reducegdkcextension forcé>
g (m
%" (m=1 2 and 3)

2 2
(5.11). However we stress that terms with¢ /9% are not present in (6.4)

2 2
contains any term with$0 ¢ /9% originating from

2 2 _
because® ¢/ =0 for the special crack discussed in Section 6.21aHy,

they are not present when the crack front is shntaﬂi;E 0), Section 6.1.
A question arises: what may be the implicagtionth regard to the

precision of ourCresult (5.16)-(5.17), of a more restrictive coratition the

shape of suffered by the edges I1? The shape‘zcﬁ‘smooth or rough) plays
an important role in the analysis of the segmemtaprocess of the crack

front [19]: when the crack front is smooth Qnda‘t/aXSsmall)<G>:1and
no comparison with experiment is possible Vi& >: however when the
crack front is rough ‘zsmall only, no limitation on the value

ofa‘t/aXS), <G >may be express as a function of the crack frontacteristic

parameters and applied loadings, and a comparisthnexperiment is then
possible [19]. Experimentally this is the mode Idading that plays a
preponderant role on the segmentation processeafrtck front (Section 1).
The mode Il loading to which is attached the eddgdays a minor role.
Consequently our result (5.16)-(5.17) should rettsmprecision with regard

to experiment. The behaviours®(6.2) and< G >(6.4) presented in Section
6 for special cracks agree with experiments. Weehalentified crack

configurations for which Gand<G>are larger than 1 (the value 1
corresponds to a planar crackolﬁxii); these corroborate the fact that non

planar cracks fluctuating about an average fractlmee " (Figure 2) are
observed experimentally.

In conclusion, a model of non-planar crackioite length under mixed
mode I+lI+lll  loading, fluctuating about an averagdracture

surfacd' =" that departs frof%s, has been investigated. The crack
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front has an arbitrary shapfe spreading if2*3planes. We have established
expressions for both the stress about the craait ®.11) and the crack
extension forces per unit length of the crack front (5.13) (5.18Je have
averageds over %8 for one special crack with a segmented front anmd
crack configurations for which the average crackeesion force<G >is

larger than the value corresponding to that oflamar crack i3 under
mixed mode I+II+1ll loading thus confirming the agcence of non-planar
fracture observed in real materials.
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