
Rev. Ivoir. Sci. Technol., 16 (2010) 11 – 50 
ISSN 1813-3290 

P. N. B. ANONGBA 

11 

NON-PLANAR CRACK UNDER GENERAL LOADING : DISLOCATIO N, 
CRACK-TIP STRESS AND CRACK EXTENSION FORCE 

 
P. N. B. ANONGBA 

 
U.F.R. Sciences des Structures de la Matière et de Technologie, Université 

de Cocody, 22 BP 582 Abidjan 22, Côte d’Ivoire 
 

(Reçu le 15 Mai 2010, accepté le 07 Septembre 2010) 
_________________________ 
* Correspondance et tirés à part, e-mail : anongba@yahoo.fr 
 
 
ABSTRACT   
 
This paper investigates the mixed mode I+II+III loading of a non-planar 

crack fluctuating about an average fracture surface )( 1xhh =  that departs from 
31xOx  in an infinitely extended isotropic elastic medium. The crack consists 

of a continuous distribution of three types of non-straight dislocation with 
infinitesimal Burgers vectors: types 1 and 2 are edges on average and 
different in nature (1 responding to the mode I loading and 2 to mode II) and 
type 3 corresponds to screws on average responding to mode III loading. The 

dislocations are directed along the−3x direction and spread in −32xx planes in 

a small oscillating shape ),( 31 xxξξ =  at an average elevation )( 1xh . The 
displacement and stress fields of three dislocations, with arbitrary shape and 
average character of edge or screw type, are first given. Expressions for the 
stress about the crack front and crack extension force G  per unit length of the 
crack front are also given. Formula for a spatial average >< G  of G  is 
provided for a special crack having a segmented front. Crack configurations 
for which >< G  is larger than the value corresponding to that of a planar 

crack in 31xOx  under mixed mode I+II+III loading are revealed by the 
present analysis thus corroborating the occurrence of non-planar fracture 
abundantly observed in real materials.   
 
Keywords: Crack propagation and arrest; Energy release rate;  
                   Dislocations; Crack mechanics; Energy methods  
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RÉSUMÉ 
     Fissure non plane sous sollicitation extérieure arbitraire : dislocation, 
contrainte en tête de fissure et force d’extension de la fissure 
 
Cet article étudie la sollicitation, en mode mixte I+II+III, d’une fissure non 

plane fluctuant autour d’une surface moyenne )( 1xhh =  qui s’écarte du plan 
31xOx  dans un milieu élastique isotrope infiniment étendu. La fissure est une 

rangée continue de trois types de dislocation non droites avec des vecteurs de 
Burgers infinitésimaux : les types 1 et 2 sont des coins en moyenne de nature 
différente (1 obéissant au mode I et 2 au mode II) et le type 3 est constitué de 
vis en moyenne obéissant au mode III. Les dislocations sont orientées dans la 

direction 3x , ont une forme arbitraire petite ),( 31 xxξξ = étalée (à la cote 

moyenne )( 1xh ) dans des plans 32xx . Les champs de déplacement et de 
contrainte de trois dislocations, avec une forme arbitraire et un caractère 
moyen coin ou vis, sont d’abord donnés. Des expressions pour la contrainte 
au niveau du front de fissure et la force d’extension G  de la fissure par unité 
de longueur du front de fissure sont également données. Une formule d’une 
moyenne spatiale de G , >< G , est établie dans le cas particulier d’une 
fissure non plane dont le front est segmenté. Des configurations de fissure 
non planes, pour lesquelles >< G a une valeur plus élevée que celle 

correspondant à une fissure plane dans le plan31xOx , sont mises en évidence 
par la présente étude corroborant ainsi l’occurrence des fissures non planes 
abondamment observées dans des matériaux réels.   
 
Mots-clés : Propagation et arrêt de la fissure, Force d’extension de la  
               fissure, Dislocations, mécanique de la rupture, Méthodes d’énergies 
 
 
I - INTRODUCTION 
 
A planar crack in a solid under general loading can be analysed using a 
combination of three simple loading modes: tension perpendicular to the 
crack (mode I), shear parallel to crack applied perpendicularly to crack front 
(mode II) and shear parallel to crack directed along crack front (mode III). 
Explicit expressions for the stress at crack tip and crack extension forceG per 
unit length of the crack front are available [1 to 3]. It is found experimentally 
that a certain amount of mode I is required for crack motion initiation. 
Although planar fracture under mode I loading is quite well understood, 
fracture in real materials generally occurs on a non-planar surface. Almost all 
experimentalists face non-planar surface when investigating broken 
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specimens. On the scientific side, the conditions (crack geometries, loading 
modes …) under which such cracks develop are not well understood. Of 
particular interest are methods leading to expressions for the stress about the 
crack front and crack extension force. The values taken by these quantities, 
when compared with those corresponding to the planar crack, could then 
explain the occurrence of non-planar cracks in real materials. 
Consider a fracture specimen with large dimensions to which a Cartesian 

system ix with originO is attached; apply externally to specimen a 

tension
a
22σ in the −2x direction and a shear 

a
23σ along 3x : under such 

conditions fracture over large distance occurs on a non-planar 

surface ),( 212 xxx ξ= that fluctuates about an average plane31xOx . Fracture is 

said to develop under mixed mode I+III loading. The fluctuationξ  is 

generally small ( mµ1 approximately) but spatial derivatives of ξ ( 3/ x∂∂ξ for 

instance, assuming the crack to propagate along the −1x direction) can be 
very large leading to a strong roughness of the broken surface even under 

very small shear by tension ratio
aaM 222313 /σσ≡ ( %6≈ ). These observations 

are derived from numerous experiments performed under various different 
conditions ([4 to 7], among others). Laboratory fracture experiments on large 
specimens under mixed mode I+II+III loading are uncommon. However, 
based on observations of numerous broken surfaces including mixed modes 
I+II ([8 to 11], for a revue see [5]) and I+III (as referenced above), one can 
anticipate the non-planar fracture surface in a specimen broken under mixed 
mode I+II+III loading to have the same features as those observed under 
mixed mode I+III with the main exception that the average fracture plane is 

inclined with respect to 31xOx . Hence, when applying to specimen a shear 
a
12σ in the −1x direction, the average fracture surface will depart from 31xx .  

     The study of fracture in mixed mode I+III or I+II+III loading in solids 
requires a non-planar crack model that provides expressions for physical 
quantities pertinent to discuss crack propagation. For this purpose, a relevant 
quantity is the crack extension force per unit length of the crack front (or 
energy release rate)G . Since fracture proceeds through the motion of a 
macroscopic length of the crack front, it appears necessary to calculate an 
average >< G  and look for non-planar crack configurations that 
maximize >< G . These configurations may then be confronted with 
experiments.  
 
A number of theoretical analyses devoted to non-planar cracks have been 
published. Works by Gao [12], Xu et al. [13], Ball and Larralde [14] and 
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Movchan et al. [15] consider a non-planar crack that fluctuates smoothly 

about imposed average fracture plane31xOx (in our notation) under general 
loading (mixed mode I+II+III loading) except Ball and Larralde [14] which 

restrict themselves to mode I only. ξ and its spatial derivatives 
1/ x∂∂ξ and 3/ x∂∂ξ are assumed small and linear expressions for the stress 

intensity factor (SIF) are given. These results have a narrow application. 
Actually these apply to a crack that propagates essentially under mode I 
loading but whose front, for various possible reasons, suffers a slight 
perturbation. Indeed, when a mode II loading (in addition to mode I) is 

applied to a planar crack located in 31xx , the subsequent fracture propagation 

path departs from 31xx  [16, 17] and condition ξ small is violated; for applied 

mode III as mentioned earlier, ξ is generally small but 3/ x∂∂ξ  measured in 

the crack front −3x direction may be large even under13M  small.  
In addition to these previous analyses, there exists theoretical works on non-

planar fracture that impose ξ small only, with no restriction on its spatial 
derivatives (Lazarus et al. [18], Anongba [19]). Lazarus et al. [18] consider 

an initially planar semi-infinite straight edge crack (crack front in the 3x -
direction) that adopts a non-planar configuration after fracture propagation 

over a short distance δ  (in their notation), the new crack surface ),( 3xδξξ =  

(in our notation) beingδ and 3x dependent. The only small parameter is δ  (or 

equivalentlyξ ); there is no restriction on the spatial derivatives ofξ . They 
provide stress intensity factors to first order inδ and use the usual plane strain 
relation to estimate the crack extension forceG . Their approximate formula 

for G is written to second order in a parameter, denoted δγ dd / by them, that 
is a measure of the derivative of the crack-front twist angle with respect to 
crack extension. The obtained relation overestimates actual rotation rates by 
nearly 3 orders of magnitude [18]. However they obtained a quiet good value 
of the global rotation rate by a more complex criterion based on the 
maximization of >< G  and SIF expressions for three or four point bending 
experiments. 
We have previously considered a model of non-planar crack of finite length 
under mode I loading that fluctuates about an average plane [20 to 22]; the 
crack has a sinusoidal front perpendicular to the direction of fracture 
propagation and consists of a continuous distribution of sinusoidal edge 
dislocations [23]. The stress field of a sinusoidal edge dislocation leads to the 
stress about the crack front and crack extension force. The same approach is 
maintained in a recent work [19] extending to mixed mode I+III loading; the 



Rev. Ivoir. Sci. Technol., 16 (2010) 11 – 50 
 

P. N. B. ANONGBA 

15 

crack front, instead of being simply sinusoidal, can now be arbitrary. The 
crack consists of a continuous distribution of infinitely long type 1 and 2 
dislocations with edge and screw average characters. The dislocations are 

perpendicular to the −1x direction of fracture propagation, have an arbitrary 

periodic small shape )( 3xξξ =  (independent of1x ) spreading in the 
−32xx plane and their portions may be arbitrarily inclined with respect to the 

−3x direction. There is no restriction on the spatial derivatives of 
ξ ( 3/ x∂∂ξ and

2
3

2 / x∂∂ ξ particularly: see Section 5.1 in [19]). Dislocations 1 
have an edge average character and respond to mode I loading; dislocations 2 
have a screw average character and respond to mode III. The displacement 
and stress fields of two dislocations, with arbitrary shape and average 
character of edge or screw type, are given. Expressions for the stress about 
the crack front and crack extension force G per unit length of the crack front 
are also given. Formula for >< G , a spatial average ofG , is provided for one 
special crack having a segmented front. Conditions under which >< G  is 
maximum conform to experimental measurements of crack-front twist angle 
versus applied stress.  
 
Our method of analysis [19, 20] can be extended in a straightforward manner 
to mixed mode I+II+III loading; this is the goal of the present work that aims 
at providing explicit expressions for elastic fields of the crack dislocations, 
crack-tip stress and crack extension forceG . This introduces a new type of 
sinusoidal edge II dislocation, responding to mode II loading, perpendicular 

to the −1x direction and spreading in the −32xx plane. Our modelling 

consider a crack whose surfacef is given by )(),(),( 13131 xhxxxxf += ξ where 
ξ is a function of 1x and 3x oscillating about the value zero and taking small 

positive and negative values. hdepends on 1x only, odd (for definiteness) and 
taking arbitrary values. The average fracture surface is therefore defined by 

the equation )( 12 xhx = . The crack consists of a continuous distribution of 
three types of dislocation with infinitesimal Burgers vectors: types 1 and 2 
are edges on average and different in nature (1 for the mode I loading and 2 
for mode II) and type 3 corresponds to screws on average associated with 

mode III loading. The dislocations are long perpendicular to the −1x direction; 

the one located at 
'
11 xx = spreads in the −32xx plane in the form 

),( 3
'
1 xxξξ = with an average elevation (with respect to 31xOx ) given by 

)( '
12 xhx = . Elastic fields of the three types of dislocation are given in 
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Sections 2, 3 and 4; we first express the plastic distortion and obtain the 
associated displacement field using a method developed by Mura [24] as 
explained in Section 2.2. In Section 5 our crack model and analysis are 
presented; explicit expressions for the stress about the crack front and crack 
extension forceG are provided. Section 6 deals with special cracks captured 
by the modelling with a more detailed description forG and associated spatial 
average value >< G . Concluding remarks are given in Section 7.  
 
 
II – DISPLACEMENT AND STRESS FIELDS DUE TO A 

DISLOCATION OF EDGE I AVERAGE CHARACTER  
 

II-1. Plastic distortion 
 

We consider a dislocation with Burgers vector )0,,0( b  lying indefinitely in 

the −3x direction and spreading in the −32xx plane at the origin in the form of 
a Fourier series  
 

( ) hhxxf nnnn
n

+≡++=∑ ξκδκξ 33 cossin
.                                                (2.1) 

 

Here handnare real and positive integer respectively; nκ  a wave number and 
nξ  and nδ  are amplitudes. We assume ξ  to be small and express the plastic 

distortion 
)(* xij
rβ

 to first order inξ ; this gives  
 

)()()()()( 2121
*
12 hxxbhxHxbx −−−= δξδδβ r

                                               (2.2) 
 

and the other components of 
)(* xij
rβ

 are zero, where δ  and H are the Dirac 
delta function and the Heaviside step function, respectively. Here, the first 

term is due to a straight edge dislocation displaced by hx =2 from the origin. 

The corresponding displacement can be derived by replacing 2x by hx −2  in 
the displacement of an edge dislocation at the origin (in the present geometry, 

see [23]). We shall therefore concentrate on the second term denoted
ξβ *

12 . Its 
Fourier form may be written as  
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)(
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/

/

321
*

12
221133
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1
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n
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ππ
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1k  and 2k  are real and nk3  is a natural number. 
nξβ *

12  and 
nδβ *

12  are non zero 

only when 13 ±=nk  and equal to 
2

2 )2(2/)exp( πξnibhik−±  and 
2

2 )2(2/)exp( πδnbhik−−  respectively. The Fourier form of )(*
12 x

rξβ  may be 
arranged to read  
 

( ) 21
))(())((

2
*
12

3221132211

)2(2
)( dkdkezez

b
x xhxkxki

n
xhxkxki

n
n

nn κκξ

π
β +−+−−+

∞

∞−

∞

∞−

+−= ∫∫∑
r

  (2.6) 

where nnn iz ξδ +=  and nnn iz ξδ −= . 
 
II-2. Displacement and stress fields 
 

The displacement )(xum
r

(m = 1, 2, 3) due to a plastic distortion of the form 
xki

ijij ekx
rrrr

)()( ** ββ =
where ),,( 321 kkkk =

r

has been obtained by Mura [24] to be  
 

     
xki

ijmkkljilm ekkLcikxu
rrrrr

)()()( *β−=
.                                                         (2.7) 

 
For isotropic material,  
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where 
2
3

2
2

2
1

2 kkkk ++=  and  

     ljkilikjjiklkljic δµδδµδδλδ ++=
,                                                             (2.9)  

 
ijδ

 being the Kronecker delta and λ  and µ  are Lamé constants. According to 

(2.7), 
xki

mkkllm ekkLcikxu
rrrrr

)()()( *
1221 β−=

 if 
*
12β  is given as

xkiek
rrr

)(*
12β

. In the 

present case however 
*
12β  is given by (2.6). The linear theory of elasticity 

allows for the superposition of solutions, so that the corresponding solution 
may be written as  
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in which  ),,(' '
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'
21

'
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r
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r
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),,( 321 xhxxxh −=r
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the subscript i  taking  the values 1 or 2 in (2.11); the term in  is an 

operator that acts on the factor with nI ; 
2

2
2
1

2 )( hxxr −+= . ][xKn  is the nth-

order modified Bessel function usually so denoted and ijδ
 is the Kronecker 

delta. Finally, the total displacement at ),,( 321 xxxx =r takes the form: 
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subscript i = 1, 2 and 3; 33 cossin xxA nnnnn κδκξ += ; the term in is an 

operator that acts onnA ; ν is Poisson’s ratio. 
h

iu0
is the displacement due to a 

straight edge dislocation displaced by hx =2  from the origin: 
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     The stress field can be obtained by differentiating the displacement. We 
find: 
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where subscripts i  and j  take the values (1, 2 and 3) and (1 and 2) 

respectively, )1(2/ νπµ −= bC  and 
h

ij
0σ

 is the stress due to the straight edge 

dislocation displaced by hx =2  from the origin: 
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Note that 
0)(0

3 =xh
j

rσ
 ( j = 1 and 2).  

We indicate here a useful observation. From equations (2.14) and (2.16), 

those due to a dislocation with the form hxxf nnnn ++= 33 cossin κδκξ  may 

be obtained by removing the symbol ∑  (in (2.14) and (2.16)). Conversely 
from the knowledge of the elastic fields due to a dislocation with the simple 

form hxf nn += 3sinκξ , we arrive at those corresponding to a dislocation with 

the more general form (2.1), simply by adding ∑  to the fields and writing 
33 cossin xx nnnn κδκξ +  instead of 3sin xnn κξ  and )sincos( 33 xx nnnnn κδκξκ −  

instead of 3cos xnnn κξκ . 
 
III – DISPLACEMENT AND STRESS FIELDS DUE TO A 
DISLOCATION OF EDGE II AVERAGE CHARACTER  
 
III-1. Plastic distortion 
 

We consider a dislocation with Burgers vector )0,0,(b  lying in the 
−3x direction and spreading in the −32xx plane at the origin in the Fourier 
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series form (2.1). As indicated at the end of Section 2.2, the elastic fields of 
this dislocation can be derived from those due to a sinusoidal dislocation 

located at the origin with the same Burgers vector, lying in the −32xx plane 

and defined by 32 sin xx nn κξ= ( 0=h ), Figure 1. We first treat this simple 
case. Let the sinusoidal dislocation be introduced in the medium by sliding 

the part of the material 01 <x  and 32 sin xx nn κξ>  by )0,0,(bb =
r

 and the unit 

normal to the surface 32 sin xx nn κξ= (denoted Sand hachured on Figure 1), 

at an arbitrary point ),sin,( 331 xxxP nn κξ= ,be equal to 

)cos,1,0()cos(1/1 3
2

3 xxn nnnnnn κκξκκξ −+=r
pointing to the negative 2x -

direction. The plastic distortion 
*
ijβ

 is written by Mura [25] as 
 

   
))(()(* xnbx ijij
rr ρδβ −=

                                                                                (3.1)  
 

where jb
 and in  are the component of the Burgers vector b

r

 of the 

dislocation and n
r

 respectively; )(x
rρ  is the distance from the position defined 

by x
r

 to the surfaceSmeasured along a direction perpendicular toS(i.e., 
parallel to n

r
) andδ is the one–dimensional Dirac delta function, being 

unbounded when x
r

 is onS( i.e., 0)( =x
rρ ) and zero otherwise. There are two 

non-zero components of the plastic distortion (by using (3.1) and adding the 
Heaviside step function):   
 

   
)()sin(

)cos(1
)( 1322

3

*
21 xHxx

x

b
x nn

nnn

−−
+

= κξδ
κκξ

β r

                            (3.2) 
and  

   
)(cos)( *

213
*
31 xxx nnn

rr βκκξβ −=
                                                                 (3.3) 

 

whereH is the Heaviside step function; we assume the shape 3sin xnn κξξ = to 
be small: this assumption is common to the three types of dislocation 
considered in this study. In addition, particular to the dislocation of edge II 

average character, we also consider 3/ x∂∂ξ small. This reduces coefficient 
])cos(1/1[ 2

3xnnn κκξ+ to unity in (3.2); corresponding Fourier forms used in 
the sequel are  
 



Rev. Ivoir. Sci. Technol., 16 (2010) 11 – 50 
 

P. N. B. ANONGBA 

22 

21
)(2

1
2

*
21

221133 )(
2

1
1

)2(
)( dkdkeee

k

ik

b
x xkxkixixin nn +−

∞

∞−

∞

∞−







 −−−= ∫∫
κκξ

π
β r

            (3.4)  
and  
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∞
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κκ
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                        (3.5)  
 

respectively, where 1k  and 2k  are real.  

 
Figure 1 : A sinusoidal edge II dislocation lying in the −32xx plane at the  

                origin with a Burgers vector in the −1x direction 
 
III-2. Displacement and stress fields 
 

With two non zero components 
*
21β and

*
31β , the displacement (2.7) reads  

 
xki

mm
xki

mmm eLkLkieLkLkixu
rrrrr *

311331
*
211221 )()()( βµβµ +−+−=

.       (3.6)  
 

In the present study
*
21β and

*
31β , as given by their Fourier forms (3.4) and 

(3.5), are integrals of expressions of the form
xki

ij ek
rrr

)(*β
. The linear theory of 

elasticity allows for the superposition of solutions, so that the displacements 
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)(xum
r

 to the present problem are similar integrals of displacements of the 

form mu . We thus obtain at once 
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where the subscriptm takes the values 1, 2 or 3, ),( 210 kkk =
r

 and 
),,( 321 nkkkk κ==

r

. With (2.8), this becomes  
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where 
2
2

2
1

2
0 kkk += . Further calculations involve the following identities:  
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where
2
2

2
1

2
0 xxr +=  and the subscript i takes the values 1 or 2. The terms of 

zero order with respect to nξ in the displacement (3.8) correspond to the 
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straight edge dislocation (see [25] for instance). The calculations in (3.8) lead 
to the displacement of the sinusoidal dislocation at the origin with Burgers 

vector )0,0,(b . The displacement due to a dislocation of edge II average 
character with form (2.1) may then be expressed as:  
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The term in is an operator that acts onI defined in (3.9). 
2

2
2
1

2 )( hxxr −+= and
h

iu0
is the displacement due to a straight edge 

dislocation displaced by hx =2 from the origin: 
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The stress field associated with (2.1) can be obtained by differentiating the 
displacement. We find:  
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h
ij
0σ

 is the stress due to the straight edge dislocation displaced by hx =2 from 
the origin: 
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Note that 00
23

0
13 == hh σσ .                                         

 
IV - DISPLACEMENT AND STRESS FIELDS DUE TO A  
       DISLOCATION OF SCREW AVERAGE CHARACTER  
 

We consider a dislocation with Burgers vector ),0,0( b  lying in the 
−3x direction and spreading in the −32xx plane at the origin in the Fourier 

series form (2.1). The only non-zero component of the plastic distortion is 

written to first order inξ : 
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                                            (4.1) 
 
that is identical to (2.2). Here, the first term is due to the straight screw 

dislocation displaced by hx =2 from the origin. The corresponding 

displacement can be derived by replacing2x by hx −2 in the displacement of a 
screw dislocation at the origin (see for instance [24]). The Fourier form of the 

second term is identical to that (2.6) of
ξβ *

12 (Section 2). To get the total 
displacement field, we proceed exactly as for the dislocation of edge I 
average character (Section 2). The result is  
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subscript =i 1, 2 and 3;
hu0

3  is the displacement due to a straight screw 

dislocation displaced by hx =2 from the origin: 
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     The stress field can be obtained by differentiating the displacement. We 
get: 
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Subscripts i  and j  take the values (1, 2 and 3) and (1 and 2) respectively 

and
h

ij
0σ

 is the stress due to a straight screw dislocation displaced by 
hx =2 from the origin: 
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Note that 0)(0 =xh
ii

rσ  ( i = 1, 2 and 3) and 00
12 =hσ . 

 
V- ANALYSIS OF THE NON-PLANAR CRACK  
 
V-1. The model 
 
The dislocations with edge I and II (Sections 2 and 3) and screw (Section 4) 
average characters are now considered to be continuously distributed over the 

interval ax −=1  toa . The shapef of the dislocations depends on 1x in the 
form 
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It is understood in our crack analysis thatnξ , nδ , nκ andh(introduced in (2.1)) 

are position dependent along1x in the dislocation distribution. The medium is 
assumed to be infinite, isotropic and elastic and subjected to uniform applied 

tension 
a
22σ  and shears 

a
12σ and

a
23σ  at infinity. The dislocation distribution 

function )( 1xDi  ( 1=i  and 2 for the edges I and II and 3=i  for the screws) 

gives the number of dislocations i  in a small interval 1dx  about 1x  

as 11)( dxxDi . Dislocations 1, 2 and 3 have a Burgers vector )0,,0( b , )0,0,(b  

and ),0,0( b  respectively and to anyone located at1x a running point 
),,( 31 xfxP = ( f being given by (5.1)) is associated. We are concerned with 

the problem of finding the equilibrium distributions iD of the dislocations 
under the combined action of their mutual repulsions and the force exerted on 

them by
a
22σ ,

a
12σ  and

a
23σ . We may ask for zero total force at any pointPon 

each of the infinitesimal dislocations or equally (as shown in [19]) ask for the 
crack faces to be traction free. The latter condition is found to be more 
convenient, it reads 
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ijσ
stands for the total stress at any point ),,( 321 xxx  in the medium and is 

linked to iD . In (5.2), we are only concerned with the points of the crack 

faces. We write ijσ
as 
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here
)(n

ijσ
(n =  1,2 or 3) is the stress field produced by a dislocation displaced 

by ( hx −2 )from the origin with Burgers vector )0,,0( b , )0,0,(b  or ),0,0( b . 
an
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, the applied stress, is equal to zero 

except
aa
22

)1(
22 σσ = ,

aa
12

)2(
12 σσ = and
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Figure 2 is a schematic representation of special cracks captured by the 

modelling. The cracks extend in the−1x direction from ax −=1 toa and must 

be considered to run indefinitely in the−3x direction. The crack of Figure 2c 
is confined for illustration purpose in a parallelepiped of finite size. The 

crack shape in planes perpendicular to 1x is described by ξ (Figure 2c for 
example). 
 
 
 

 

 
 

Figure 2 : Simple special cracks. (a) Inclined planar crack 0π (see text). (b) 

A non-planar crack (parallel to 3x ) ashodd function of 1x  ( )( 12 xhx = ). (c) 

Non-planar crack fluctuating about an average inclined plane 0π . The crack 

consists of planar facets; its fronts at ax ±=1  lie in −32xx planes. At ax =1 , 

the crack front is characterized by inclination angles Aφ  and Bφ  (see (d)) at 
points A and B located on the average fracture plane. (d) Sketch of the crack 
front in (c) with B taken as origin. In this geometry (from (a) to (c)) the 

general loading of the crack systems corresponds to uniform applied
a
22σ ,

a
12σ  

and 
a
23σ  at infinity in the 2x , 1x  and 3x  directions, respectively.  
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Althoughξ is given as a Fourier series in (5.1), it appears as a general 
function in expressions for both the stress about the crack front (Section 5.3) 

and the crack extension force G  (Section 5.4). The shapef of the crack in 

planes perpendicular to 3x is given by bothξ , through the −1x dependence of 

positive quantitiesnξ , nδ and nκ (Equation (5.1)), and function )( 1xhh = . 

Sinceξ is assumed to be small oscillating function, the average fracture plane 

is described correctly by the equation )( 12 xhx = . When 0=ξ , the crack 

dislocations are straight parallel to3x and distributed over the 

surface )( 12 xhx = .Specific examples are (Figure 2): 

• 101)( xpxh =  ( 00 ≥p ) and 0=ξ . This corresponds to a planar crack 
0π (with a straight front parallel to 3x ) rotated around 3Ox  by angle 

0
1

0 tan p−=θ  from 31xOx , Figure 2a.  

• )( 1xh is an arbitrary function of 1x and 0=ξ . The sketch in Figure 2b 
corresponds to hodd although this is not mandatory. Actually hodd 
conforms well to homogeneity of the medium, geometry of the 

applied loadings and iD (5.7) approximations adopted in the present 
study. 

• 101)( xpxh =  ( 00 ≥p ) and )( 3xξξ = independent of1x . The crack 

fluctuates about plane 0π with a front spreading in planes parallel to 
32xx in the formξ . In the example displayed in Figure 2c the crack 

consists of planar facets with inclination angles Aφ and Bφ  (Figure 2d) 
at points A and B of the crack front located on the average fracture 
plane.  

 
V-2. Dislocation distributions 
 
Assume first that the dislocations are straight parallel to the 

−3x direction )0( =ξ and 101)( xpxh = depends linearly on1x with 0p positive 
constant (Figure 2a). We thus have a planar crack of finite extension, with 

straight fronts running indefinitely along3x , rotated (from 31xOx ) about the 

positive −3x direction by 0
1

0 tan p−=θ . The crack extends from ax −=1  to 
a and is subjected to mixed mode I+II+III with loadings applied at infinity. 
Under such conditions in (5.2) we 

have 011 // pxhxf =∂∂=∂∂ , 0// 33 =∂∂=∂∂ xxf ξ and the associated stresses are 
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written at )),(,( 311 xxhxP = as (making use of (5.3)-(5.4) and stress expressions 
in Sections 2 to 4) 
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where the subscripti takes the values 1 and 2, )1(2/1 νπµ −= bC  

and πµ 2/2 bC = ; the traction free boundary condition (5.2) then becomes  
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                                                       (5.6) 
 
where the Cauchy principal values of the integrals are to be taken. The type 
of solution is well known [26]:  
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)(

0
iD ( Ii = , II  and III  respectively) corresponds to the equilibrium distribution 

of straight dislocations when the crack is planar in the −31xOx plane ( 00 =p ), 

extending from ax −=1 toa , under pure mode i  loading. The corresponding 

relative displacementiφ  of the crack faces, in the2x  ( 1=i ), 1x ( 2=i ) and 
3x ( 3=i ) directions, are:  

 

     )()/1())(/)(/1()( 1
)(

022120
2/12

1
2

1222212011 xpxaCbpx Iaaaaa φσσπσσσφ −≡−−= , 

     )())(/()( 1
)(

0
2/12

1
2

11212 xxaCbx IIa φπσφ ≡−= , 

   )())(/()( 1
)(

0
2/12

1
2

22313 xxaCbx IIIa φπσφ ≡−= ;                                              (5.8) 
 

)(
0
iφ ( Ii = , II  and III  respectively), similarly as

)(
0
iD , corresponds to the 

relative displacement of the crack faces when the crack is in 31xOx under pure 

modei loading. iD is unbounded at ax ±=1 and the iφ  curve vertical at these 
end points. 
     In its general form (5.2) requires a numerical resolution and this is a 

formidable task; only simple forms off are tractable. We have given 

approximate solutions for1D and 3D (
0,0 212 == Daσ

) when 
0=h and )( 3xξξ = depends on3x only [19]. Fortunately as it appears below, 

we can reasonably give approximate expressions for the stress about the 

crack front and crack extension force withf given by (5.1) using iD (5.7) 

when the average fracture surface hcan be approximated by plane 0π of 
Figure 2a. 
 
V-3. Stresses about the crack front 
 
To obtain expressions for the stress about the crack front, we proceed as 

follows. In the neighbourhood of the crack front located at ax =1 , any point 
Pwith coordinates ),,( 321 xxx is characterized by2x close tohsince the fracture 

surface is given by ξ+= hf withξ is small. We can thus consider the Taylor 

series expansion of 
),,( 32

'
11

)( xxxxn
ij −σ

(5.4) about )( 12 xhx = to first order with 

respect to )( 2 hx − ; this gives  
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where )( 2 hxo − is the complementary part of the series. 

Writing sax +=1 , as<<<0 , ijσ
(5.3)-(5.4) is given by the following formula: 
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δ                                (5.10) 
 
with aa <<δ . This stress expression means that only those dislocations 

located about the crack front in −1x interval 
],[ aaa δ−
will contribute 

significantly to the stress at sax +=1 ahead of the crack tip as s tends to zero; 
any other contribution will be negligible for a sufficiently small value of s. 
We observe that this formula is precise with no place for any other kind of 
additional stress term. Applying the Taylor expansion (5.9), in 

)),(,( 31
'
11

)( xxhxxn
ij −σ

 and 2
)( / xn

ij ∂∂σ
(in which sax +=1 ), appears the 

difference ( )()( '
11 xhxh − ) which we express as follows since 1x  and 

'
1x  (see 

(5.10)) are close to a : 
)()()()( 111 axoaxpahxh −+−+= and )()()()( '

1
'
1

'
1 axoaxpahxh −+−+= where

1/)( xahp ∂∂= ; therefore )()()()( '
11

'
11

'
11 xxoxxpxhxh −+−=− . Furthermore in 

ijσ
(5.10) we restrict ourselves to singularities of the type

2/1−s only; this is the 
singularity that comes into play in the study of planar cracks and gives a 
well-defined value to the crack extension force. It is sufficient to identify 

)(n
ijσ

to the unbounded terms with )'/(1 1xsa −+  in the Taylor expansion (5.9). 

Assuming ),( 31 xxξ and its spatial derivatives with respect to3x to be bounded 

at ax =1 , the involved integrals in (5.10) are of the type 
')'/()'( 111 dxxsaxDn −+∫ which is calculated approximately taking fornD the 

straight edge and screw dislocation distributions (5.7) corresponding to a 

planar crack 0π with a straight front parallel to 3x  (Figure 2a). We obtain 

(
)3()2()1(

ijijijij σσσσ ++=
(5.3)): 
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,                             (5.11) 
where subscript i and j take the values (1, 2 and 3) and (1 and 2) respectively; 

1/)( xahp ∂∂= , 
0
iK ( =i I, II and III respectively) is the SIF for the planar crack 
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in 31xOx at the origin under pure modei loading; 
πσ aK a

I 22
0 = , πσ aK a

II 12
0 = and πσ aK a

III 23
0 = . We stress again that s, 2x  

and 3x  are arbitrary, aaxs <<−= 1  ( 0>s ) and ))(( 2 ahx − is small. The 

parameter 0p in (5.11) originates from a planar crack 0π (Figure 2a) 
hypothetically assumed to approximate the average fracture 

surface )( 12 xhx = . This suggests that we could write 
)()( 1101 xhxpxh ∆+= where h∆ is an oscillating function of1x taking small 

positive and negative values. Taking (5.7) fornD results in coefficients 
)/1( 22120

aap σσ− and sK i π2/0
only in (5.11), the other factors have no 

concern with this approximation.  
 
V-4. Energy considerations 
 
In the following, an expression for the derivative G of the energy of the 
system with respect to crack area is derived. This serves to discuss the 
initiation of crack motion. We follow Anongba [19, 20] and the procedure is 
adapted from Bilby and Eshelby [26].     
     Allow the right-hand front of the non-planar crack with shape (5.1) (use 

Figure 2c to illustrate) to advance (say rigidly for simplicity) from ax =1  
to aa δ+ , but apply forces to the freshly formed surfaces to prevent relative 
displacement; the energy of the system is unaltered. Now allow these forces 
to relax to zero so that the crack extends effectively froma to aa δ+ . The 
work done by these forces corresponds to a decrease of the energy of the 
system which we shall estimate (the energy of the system consists of the 
elastic energy of the medium and the energy of the loading mechanism). The 

elementdsof the fracture surface ),( 312 xxfx = ahead of the crack front, at a 

point ),,( 321 xfxxP == , may be defined by dssd γrr =  where γ
r

 is the unit 

vector perpendicular todspointing to the positive −2x direction. We 

obtain dsxfxfxfxfsd )/,1,/()/()/(1/1 31
2

3
2

1 ∂−∂∂−∂∂∂+∂∂+=r and takedsto be 

given as 31
2

3
2

1 )/()/(1 dxdxxfxfds ∂∂+∂∂+= . The component of the force 

acting ondsin the −ix direction is jij dsσ
(the summation convention on 

repeated subscripts applies) where ijσ
 are stresses ahead of the shorter crack; 

thus the energy change associated withdsis 
2/)(i

jij uds ∆σ
(here a summation 
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is also considered over =i 1, 2 and 3) where 
)(iu∆ is the difference in 

displacement across the lengthened crack, just behind its tip, in the 
−ix direction. When the crack advances from ax =1  to aa δ+ , the energy 

decrease associated with a surface element 
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( aδ being small and, when used below, will be let to go to zero) is given as  
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the integration being performed with respect to1x ; we stress thats∆ is the sum 
of the surface elements dstaken at the various 

points ),,( 321 xfxxP == as 1x only changes from a  to aa δ+ . Let G be a 
derivative of the energy of the system with respect to crack area. G 
corresponds to the limiting value taken by sE ∆− /δ  as aδ (as also s∆ ) 

decreases to zero. Stresses ijσ
 generally consist of terms that are either 

bounded or unbounded as 1x  tends toa ; only those stress terms that are 
singular may contribute a non-zero value to G; the bounded terms all 

contribute nothing. Using (5.11) and defining )()( siσ  ( 1=i , 2 and 3) as  
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where  
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Expressions in[ ]o , [ ]oo and[ ]ooo are very long and need not be displayed here; 
an explicit presentation (5.17) follows. (5.13) gives the value of G  at an 
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arbitrary point ),,( 320 xfxaP =  along the front of the non-planar crack with 

projected half length a  along 1x . The calculation of 
)(iu∆ depends on the way 

the extension of the right-hand front of the crack from ax =1  to aa δ+  is 

performed. When 
)(iu∆  is obtained from a distribution of dislocations 

perpendicular to the 1x -direction, we implicitly assume a rigid crack-front 

displacement. In that case, 
)(iu∆  may be obtained from the solution of (5.2) 

modified to allow for the fact that the crack extends from ax −=1  to aa δ+  

instead of from a−  toa . Approximate expressions for 
)(

0
iG ( 1=i , 2 and 3) 

correspond to a planar distribution of straight edge and screw dislocations. 

When the crack has the geometry of Figure 2a with 00 =θ ( 00 =p ), Bilby 

and Eshelby [26] have shown that 
II

II GEKG 0
220)1(

0 /)1( ≡−= ν , 
I

I GEKG 0
220)2(

0 /)1( ≡−= ν  and 
III

III GEKG 0
20)3(

0 /)1( ≡+= ν  where E is 
Young’s modulus. The corresponding dislocation distributions 

are
)(

0
IID ,

)(
0
ID and

)(
0
IIID (see (5.7)) with associated relative displacements of 

the faces of the crack 
)(

0
IIφ ,

)(
0

Iφ and
)(

0
IIIφ (5.8). In the same approximation and 

using the dislocation distributions iD  (5.7) corresponding to a planar crack 
0π (Figure 2a) inclined by 0θ (about axis 3Ox ) with respect to 31xOx , we 

arrive at  
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Adopting approximation (5.15) and defining )(~
0PG  as 
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where  
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     For the planar crack with a straight front, the decrease of the energy of the 
system ( Eδ− ), divided by the surface element adlδ ( l  runs along the crack 
front), is defined as the crack extension force per unit edge length of the 
crack front (see [26] for example). In the present study, we shall refer to G 
(5.13) as the crack extension force per unit length of the crack front. In 
Section 6 we give a more detailed description of G for special cracks as 
illustrated in Figure2.  
 
 
VI – SPECIAL CRACKS 
 

VI-1. Cracks with a straight front 
 

We consider first the crack in Figure 2b; it extends from ax −=1 toa and runs 

indefinitely in the −3x direction. The crack front is straight parallel 

to 3x ( 0=ξ ) and )( 1xhf = independent of3x . We assume the crack to 

fluctuate about plane 0π  (Figure 2a) and take iD (5.7) as the distribution of 
the equilibrium crack dislocations.  Under such conditions the reduced crack 

extension force G
~

(5.16)-(5.17) under mixed mode I+II+III loading takes the 
form 
 

)1/(1

)1/()1(21

1

1
)(

~
2
13

2
12

2
13

2
12

2
0120

20 ν
ν

−++
−+++−

+
=

MM

MMpMp

p
PG

     ( )(;0 1xhh==ξ )    (6.1) 
 

at point )),(,( 320 xahxaP = of the crack front located at ax =1 ; 
θtan/)( 1 =∂∂= xahp  (for θ , see Figure 2b).  
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     The second crack we present is given in Figure 2a. This is a tilted planar 

crack corresponding to the rotation of plane 31xOx about 30x by 

angle )(tan 0
1

0 p−=θ . The crack front is straight ( 0=ξ ) and 10xph = . The 

normalized crack extension force G
~

(5.16)-(5.17) then reads  
 

)1/(1

)1/()1(21

1

1
)(

~
2
13

2
12

2
13

2
12

2
0120

2
0

0 ν
ν

−++
−+++−

+
=

MM

MMpMp

p
PG

     ( 10;0 xph==ξ )     (6.2) 
 

at point ),,( 3020 xapxaP = of the crack front located at ax =1 . Figure 3 is a 

plot ofG
~

 (6.2) as a function of0θ for different 12M values when 
013 =M (mixed mode I+II loading). We expect that for a tilted plane crack 

0π (Figure 2a) to be observable experimentally, it is necessary that G
~

be 
larger than 1. As we can see from Figure 3, this occurs for sufficiently 

large 12M and 0θ values; the larger the 12M (dominant mode II loading) the 

smaller the 0θ  values for which 1
~ >G . When 12M is very large and 

013 =M (pure mode II loading), 00 cos/1)(
~ θ≅PG increases continually with 

0θ from the value 1 ( 00 =θ ); this reveals the importance of mode II loading 

in increasingG
~

. The result 1
~ >G under certain conditions (Figure 3) agrees 

with experiments showing that when a mode II loading (in addition to mode 

I) is applied to a planar crack located in 31xOx , the subsequent fracture 

propagation path departs from 31xx  ([16, 17]; see also [5] for additional 
references). Under mixed mode I+III loading 

( 012 =M ) 00 cos)(
~ θ≅PG (independent of 13M ) decreases continually with 

0θ from the value 1 ( 00 =θ ); adding mode III to mode I loading contributes 

nothing to the initiation of 0π motion.  
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Figure 3: Normalized crack extension force G

~
(6.2) versus 0θ  for a planar  

              crack 0π with a straight front parallel to 3Ox  (Figure 2a), tilted  

            about 3Ox  by an angle 0
1

0 tan p−=θ  from 31xOx , under mixed mode  

            I+II loading ( 013 =M ). The curves correspond from bottom to top to  

           7.012 =M , 1.5 and 3.  
 
VI-2. Cracks with a non-straight front 
 
The last example we shall describe is a non-planar crack (Figure2c) with a 

segmented front (Figure 2d) whose average fracture surface is plane 0π tilted 

about 3Ox by angle 0θ from 31xOx . The crack front at ax =1 runs indefinitely in 

the −3x direction and is located in a −32xx plane. We describe ξ below 

taking locallyBas origin as in Figure 2d. ξ  is then odd and 
−+= )2( BA λλλ periodical with respect to 3x  where Aλ  and Bλ ( Figure 2d) 

are the projected length along 3x  of planar facet AandB  respectively. ξ is 
given over a wavelength as  
 

     3tan xBφξ = ,                     2/|| 3 Bx λ≤  

        )(tan 3 λφ +−= xA ,          
]2/,2/[3 ABBx λλλ +∈
.                                        (6.3) 
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 We assume general loading (mixed mode I+II+III), write θtan0 == pp for 
simplicity in (5.16)-(5.17) for the reduced crack extension force, now 

denoted vG
~

, and express the spatial average >< vG
~

of vG
~

defined 

as
3

2

0

~
)2/1(

~
dxGG vv

λ
λ ∫>=<

. We obtain 
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where 
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( ) 





 ++++++= 2222

2 1/1/)/( BBAABABA ppppppppppv
                   (6.5) 

 

and AAp φtan= , BBp φtan= . Hence >< vG
~

is a function of 

parameters ),;,,( 1312 MMppp BA . When Bφ (or Aφ ) equals zero, the crack front 

is essentially straight parallel to the −3x direction. The corresponding crack is 

similar to planar crack0π (Figure 2a); under such conditions >< vG
~

(6.4) is 
identical to (6.2). 

We first focus on the effect of 12M (mode II loading) when 0≠Bφ . In absence 

of mode III ( 013 =M ) and 0=p , (6.4) becomes under such conditions >< vG
~

 

increases with 12M  from the value )( 20 vv ν−  ( 012 =M , pure mode I loading) 

to )( 20 vv + ( 12M very large, pure mode II loading). We note from expression 

(5.11) of the stress about the crack front (when0=p ) that under pure mode I 

loading the >< vG
~

term 0v originates from 22σ and the term 
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)( 2vν− from 23σ whereas under pure mode II the >< vG
~

term 0v originates 

from 12σ and the term 2v from 13σ . We have reported on Figure 4 >< vG
~

(6.4) 

as a function of ),( Aφθ for constant °= 70Bφ , 013 =M and 12M equal to ((a) 0.1, 

(b) 0.5, (c) 1 and (d) 2). ),( Aφθ regions where >< vG
~

is larger than 1 grow as 
12M increases indicating that mode II loading contributes to improve the 

condition for the motion initiation of a crack whose fronts consist of straight 

segments. A similar behaviour as in Figure 4 is observed when 013 ≠M , other 

conditions remaining unchanged. When 0≠p it can be noted that a term with 

the product 1312MM  exists in >< vG
~

(6.4) indicating a correlated effect 
between modes II and III.  
 
 

 

Figure 4: Surfaces ),(
~

AvG φθ>< with associated contours at constant  

               °= 70Bφ , 013 =M and four different 12M : (a) 1.012 =M , (b) 0.5, (c)  
               1 and (d) 2 (see text). 3/1=ν .  
 

     ( ) ( )1/
~ 2

12
2
1220 +−+>=< MMvvGv ν      )0;0( 13 == Mp ;                                (6.6) 
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Figure 5: Surfaces ),(
~

AvG φθ>< with associated contours at constant  
 

               °= 20Bφ , 2.012 =M and four different 13M : (a) 1.013 =M , (b) 0.5,  
              (c) 1 and (d) 2 (see text). 3/1=ν .  
 

In absence of mode II ( 012 =M ) and 0=p , (6.4) becomes ( 0≠Bφ ) 
 

     )1)(1(

)1(2

1

2~
2
13

22
13

22
13

13
10

M

M
v

M

M
vvGv +−−

−−
+

+−
−>=<

νν
νν

ν
ν

  )0;0( 12 == Mp .           (6.7) 
 
This case is considered in some details elsewhere [19]: conditions under 

which >< vG
~

(6.7) is maximum are established; these conditions are then 
confronted with experimental measurements of crack-front twist angle versus 

applied stress 13M and found to conform to situations where non-planar 

cracks are favourably observed [19]. >< vG
~

(6.7) increases with 13M from the 

value )( 20 vv ν− ( 013 =M pure mode I loading) to ))1/2(( 20 vv ν−+ ( 13M very 

large, pure mode III loading); for the latter value the term 0v originates 
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from 23σ and the term 2)1/2( vν− from 33σ . We note that the 

value ))1/2(( 20 vv ν−+ reached by >< vG
~

( 0=p ) under pure mode III loading 

is appreciably larger than the corresponding value )( 20 vv + obtained above 
under pure mode II. This reveals (see also below Figures 5 and 6) a stronger 
effect of mode III loading (as compared to mode II) superimposed over mode 
I for improving the conditions for non-planar crack motion. 
 

 

Figure 6: ),(
~

AvG φθ>< with similar conditions as in Figure 5 except  

                 °= 70Bφ : 2.012 =M , 3/1=ν and 13M in (a), (b), (c) and (d) as in   
                 Figure5. 
 

Figure 5 displays >< vG
~

(6.4) as a function of  ),( Aφθ  for constant °= 20Bφ , 
2.012 =M and for different values of 13M  ((a) 0.1, (b) 0.5, (c) 1 and (d) 2). 

>< vG
~

is larger than 1 for sufficiently large13M with 

corresponding ),( Aφθ area increasing with 13M , Figure 5b to d; under such 

conditions >< vG
~

increases withAφ  (see Figure 5c and d for instance). Hence 
the more the crack front departs locally from the average straight line, the larger 

the >< vG
~

. This behaviour is amplified when we take °= 70Bφ , Figure 6, other 
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conditions remaining similar. It thus appears that mode III loading 
superimposed over mode I promotes crack front segmentation. This is in full 
agreement with experiments ([4 to 7], among others).  
 
 
VII – CONCLUDING REMARKS 
 
The method of analysis in the present study consists in using explicit 
expressions of the stress field of dislocations to give an estimated value to the 
crack-tip stress and crack extension force. More precisely, we are dealing 
with three types of dislocation with a sinusoidal shape (edges I and II and 
screws) because from the expression of the displacement and stress fields of a 
sinusoidal dislocation, one can derive that of a dislocation with the more 
general form (2.1) (Section 2.2; [19]). One can distinguish the sinusoidal 
edge I dislocation [23]: this is a dislocation located at the origin (Burgers 

vector )0,,0( b ), extending indefinitely in the −3x direction, whose shape is 

given by an equation of the type 3002 sin xx κξ= spreading in the 
−32xOx plane; the sinusoidal edge II and screw dislocations have the same 

characteristics except Burgers vectors )0,0,(b and ),0,0( b in  
1x and 3x directions, respectively.  

     The expression of the stress at the crack tip is the sum of three terms 

(5.11) associated with the three types of dislocation. (5.11) is valid under ξ  

small only, the shape of ξ being arbitrary, with the meaning that there is no 

restriction on the spatial derivatives of ξ ( 3/ x∂∂ξ and
2
3

2 / x∂∂ ξ , for instance) 
with regard to edges I and screws. Indeed the displacement and stress fields 
of edges I and screws (namely (2.14)(2.16) and (4.2)(4.4)) are established 

from a linear form with respect toξ ((2.2) and (4.1)) of plastic 

distortions
*
12β and

*
13β  (note that the exact relation is 

)()()()( *
1321

*
12 xfxHxbx

rr βδβ =−= ). Relations (2.2) and (4.1) are valid under 

the condition ξ  small only, the shape of ξ being arbitrary. Use is then made 
of formula (5.10) to give an expression to the stress at the crack tip. No 

additional hypothesis onξ and its spatial derivatives are introduced indicating 

that the final result (5.11) is valid under condition ξ small only. With regard 
to edges II, the exact form of the plastic distortion is given by (3.2) whereas 

we have used the approximate expression )()sin()( 132
*
21 xHxxbx nn −−= κξδβ r

; 

this means that we assume small the spatial derivative 3/ x∂∂ξ . Consequently 
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)2(
ijσ

 in (5.11) is valid under the conditionξ and its spatial derivatives 3/ x∂∂ξ  

and 
2
3

2 / x∂∂ ξ  small. When calculating the crack extension force G (5.13) or 

G
~

(5.16)-(5.17), the terms with 
2
3

2
2 /))(( xahx ∂∂− ξ  in 

)2(
ijσ

 (
)2(

iiσ  and 
)2(

12σ  

(5.11) for instance) contribute in terms with 
2
3

2 / x∂∂ ξξ in G ; the factor 
2
3

2 / x∂∂ ξξ  is of second order and as so should be discarded with regard to 
edges II only (this factor is admissible for the other dislocation types, edges I 

and screws). We note that (5.17) for the reduced crack extension force G
~

 

contains any term with 
2
3

2 / x∂∂ ξξ  originating from 
)(m

ijσ
 ( 1=m , 2 and 3) 

(5.11). However we stress that terms with 
2
3

2 / x∂∂ ξξ  are not present in (6.4) 

because 0/ 2
3

2 =∂∂ xξ  for the special crack discussed in Section 6.2. Equally, 

they are not present when the crack front is straight ( 0≡ξ ), Section 6.1.  
     A question arises: what may be the implication, with regard to the 

precision of our G
~

result (5.16)-(5.17), of a more restrictive condition on the 

shape ofξ suffered by the edges II? The shape of ξ (smooth or rough) plays 
an important role in the analysis of the segmentation process of the crack 

front [19]: when the crack front is smooth (ξ and 3/ x∂∂ξ small) 1
~ >=< G and 

no comparison with experiment is possible via >< G
~

; however when the 

crack front is rough (ξ small only, no limitation on the value 

of 3/ x∂∂ξ ), >< G
~

may be express as a function of the crack front characteristic 
parameters and applied loadings, and a comparison with experiment is then 
possible [19]. Experimentally this is the mode III loading that plays a 
preponderant role on the segmentation process of the crack front (Section 1). 
The mode II loading to which is attached the edges II plays a minor role. 
Consequently our result (5.16)-(5.17) should retain its precision with regard 

to experiment. The behaviours ofG
~

(6.2) and >< G
~

(6.4) presented in Section 
6 for special cracks agree with experiments. We have identified crack 

configurations for which G
~

and >< G
~

are larger than 1 (the value 1 

corresponds to a planar crack in 31xOx ); these corroborate the fact that non 

planar cracks fluctuating about an average fracture plane 0π (Figure 2) are 
observed experimentally. 
     In conclusion, a model of non-planar crack of finite length under mixed 
mode I+II+III loading, fluctuating about an average fracture 

surface )( 1xhh = that departs from 31xOx , has been investigated. The crack 
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front has an arbitrary shape f  spreading in 32xx planes. We have established 
expressions for both the stress about the crack front (5.11) and the crack 
extension force G per unit length of the crack front (5.13) (5.16). We have 

averaged G over 3x  for one special crack with a segmented front and found 
crack configurations for which the average crack extension force >< G is 

larger than the value corresponding to that of the planar crack in 31xOx under 
mixed mode I+II+III loading thus confirming the occurrence of non-planar 
fracture observed in real materials.   
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